Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study.

医学 队列 回顾性队列研究 接收机工作特性 内科学 癌症 肿瘤科 外科
作者
Yuming Jiang,Zhicheng Zhang,Qingyu Yuan,Wei Wang,Hongyu Wang,Tuanjie Li,Weicai Huang,Jingjing Xie,Chuanli Chen,Zepang Sun,Jiang Yu,Yikai Xu,George A Poultsides,Lei Xing,Zhiwei Zhou,Guoxin Li,Ruijiang Li
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (5): e340-e350 被引量:1
标识
DOI:10.1016/s2589-7500(22)00040-1
摘要

Peritoneal recurrence is the predominant pattern of relapse after curative-intent surgery for gastric cancer and portends a dismal prognosis. Accurate individualised prediction of peritoneal recurrence is crucial to identify patients who might benefit from intensive treatment. We aimed to develop predictive models for peritoneal recurrence and prognosis in gastric cancer.In this retrospective multi-institution study of 2320 patients, we developed a multitask deep learning model for the simultaneous prediction of peritoneal recurrence and disease-free survival using preoperative CT images. Patients in the training cohort (n=510) and the internal validation cohort (n=767) were recruited from Southern Medical University, Guangzhou, China. Patients in the external validation cohort (n=1043) were recruited from Sun Yat-sen University Cancer Center, Guangzhou, China. We evaluated the prognostic accuracy of the model as well as its association with chemotherapy response. Furthermore, we assessed whether the model could improve the ability of clinicians to predict peritoneal recurrence.The deep learning model had a consistently high accuracy in predicting peritoneal recurrence in the training cohort (area under the receiver operating characteristic curve [AUC] 0·857; 95% CI 0·826-0·889), internal validation cohort (0·856; 0·829-0·882), and external validation cohort (0·843; 0·819-0·866). When informed by the artificial intelligence (AI) model, the sensitivity and inter-rater agreement of oncologists for predicting peritoneal recurrence was improved. The model was able to predict disease-free survival in the training cohort (C-index 0·654; 95% CI 0·616-0·691), internal validation cohort (0·668; 0·643-0·693), and external validation cohort (0·610; 0·583-0·636). In multivariable analysis, the model predicted peritoneal recurrence and disease-free survival independently of clinicopathological variables (p<0·0001 for all). For patients with a predicted high risk of peritoneal recurrence and low survival, adjuvant chemotherapy was associated with improved disease-free survival in both stage II disease (hazard ratio [HR] 0·543 [95% CI 0·362-0·815]; p=0·003) and stage III disease (0·531 [0·432-0·652]; p<0·0001). By contrast, chemotherapy had no impact on disease-free survival for patients with a predicted low risk of peritoneal recurrence and high survival. For the remaining patients, the benefit of chemotherapy depended on stage: only those with stage III disease derived benefit from chemotherapy (HR 0·637 [95% CI 0·484-0·838]; p=0·001).The deep learning model could allow accurate prediction of peritoneal recurrence and survival in patients with gastric cancer. Prospective studies are required to test the clinical utility of this model in guiding personalised treatment in combination with clinicopathological criteria.None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助雪山飞龙采纳,获得10
3秒前
满意代萱完成签到 ,获得积分10
4秒前
April完成签到 ,获得积分10
5秒前
wp4455777完成签到,获得积分10
6秒前
够了完成签到 ,获得积分10
10秒前
八分饱应助无奈的小松鼠采纳,获得10
11秒前
CodeCraft应助无奈的小松鼠采纳,获得10
11秒前
11秒前
八分饱应助无奈的小松鼠采纳,获得10
11秒前
23应助无奈的小松鼠采纳,获得30
11秒前
23应助无奈的小松鼠采纳,获得30
11秒前
11秒前
11秒前
11秒前
CodeCraft应助无奈的小松鼠采纳,获得10
11秒前
栀子红了完成签到 ,获得积分10
16秒前
18秒前
绿色的yu完成签到 ,获得积分10
18秒前
Hiram完成签到,获得积分10
21秒前
雪山飞龙发布了新的文献求助10
22秒前
CooL完成签到 ,获得积分10
23秒前
华理附院孙文博完成签到 ,获得积分10
24秒前
wBw完成签到,获得积分0
25秒前
hoangphong完成签到,获得积分10
30秒前
空白完成签到 ,获得积分10
32秒前
善学以致用应助现代期待采纳,获得10
33秒前
黎书禾完成签到,获得积分10
34秒前
1122完成签到 ,获得积分10
35秒前
追梦完成签到 ,获得积分10
39秒前
CJW完成签到 ,获得积分10
46秒前
zzx完成签到 ,获得积分10
47秒前
嘉星糖完成签到,获得积分10
48秒前
ylky完成签到 ,获得积分10
50秒前
51秒前
56秒前
璐璐完成签到 ,获得积分10
57秒前
八分饱应助无奈的小松鼠采纳,获得10
57秒前
慕青应助无奈的小松鼠采纳,获得10
57秒前
八分饱应助无奈的小松鼠采纳,获得10
57秒前
八分饱应助无奈的小松鼠采纳,获得10
57秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092137
求助须知:如何正确求助?哪些是违规求助? 3630863
关于积分的说明 11507751
捐赠科研通 3341979
什么是DOI,文献DOI怎么找? 1836948
邀请新用户注册赠送积分活动 904840
科研通“疑难数据库(出版商)”最低求助积分说明 822585