Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study.

医学 队列 回顾性队列研究 接收机工作特性 内科学 癌症 肿瘤科 外科
作者
Yuming Jiang,Zhicheng Zhang,Qingyu Yuan,Wei Wang,Hongyu Wang,Tuanjie Li,Weicai Huang,Jingjing Xie,Chuanli Chen,Zepang Sun,Jiang Yu,Yikai Xu,George A Poultsides,Lei Xing,Zhiwei Zhou,Guoxin Li,Ruijiang Li
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (5): e340-e350 被引量:1
标识
DOI:10.1016/s2589-7500(22)00040-1
摘要

Peritoneal recurrence is the predominant pattern of relapse after curative-intent surgery for gastric cancer and portends a dismal prognosis. Accurate individualised prediction of peritoneal recurrence is crucial to identify patients who might benefit from intensive treatment. We aimed to develop predictive models for peritoneal recurrence and prognosis in gastric cancer.In this retrospective multi-institution study of 2320 patients, we developed a multitask deep learning model for the simultaneous prediction of peritoneal recurrence and disease-free survival using preoperative CT images. Patients in the training cohort (n=510) and the internal validation cohort (n=767) were recruited from Southern Medical University, Guangzhou, China. Patients in the external validation cohort (n=1043) were recruited from Sun Yat-sen University Cancer Center, Guangzhou, China. We evaluated the prognostic accuracy of the model as well as its association with chemotherapy response. Furthermore, we assessed whether the model could improve the ability of clinicians to predict peritoneal recurrence.The deep learning model had a consistently high accuracy in predicting peritoneal recurrence in the training cohort (area under the receiver operating characteristic curve [AUC] 0·857; 95% CI 0·826-0·889), internal validation cohort (0·856; 0·829-0·882), and external validation cohort (0·843; 0·819-0·866). When informed by the artificial intelligence (AI) model, the sensitivity and inter-rater agreement of oncologists for predicting peritoneal recurrence was improved. The model was able to predict disease-free survival in the training cohort (C-index 0·654; 95% CI 0·616-0·691), internal validation cohort (0·668; 0·643-0·693), and external validation cohort (0·610; 0·583-0·636). In multivariable analysis, the model predicted peritoneal recurrence and disease-free survival independently of clinicopathological variables (p<0·0001 for all). For patients with a predicted high risk of peritoneal recurrence and low survival, adjuvant chemotherapy was associated with improved disease-free survival in both stage II disease (hazard ratio [HR] 0·543 [95% CI 0·362-0·815]; p=0·003) and stage III disease (0·531 [0·432-0·652]; p<0·0001). By contrast, chemotherapy had no impact on disease-free survival for patients with a predicted low risk of peritoneal recurrence and high survival. For the remaining patients, the benefit of chemotherapy depended on stage: only those with stage III disease derived benefit from chemotherapy (HR 0·637 [95% CI 0·484-0·838]; p=0·001).The deep learning model could allow accurate prediction of peritoneal recurrence and survival in patients with gastric cancer. Prospective studies are required to test the clinical utility of this model in guiding personalised treatment in combination with clinicopathological criteria.None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可耐的梦琪完成签到,获得积分10
11秒前
果粒橙完成签到 ,获得积分10
12秒前
亦雪发布了新的文献求助20
14秒前
n3pu030036应助小周碎碎念采纳,获得10
15秒前
17秒前
17秒前
彭于晏应助小高同学采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
搜集达人应助liiiii采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
Xenia应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得30
18秒前
19秒前
小虫学长应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
19秒前
Ava应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
19秒前
pluto应助科研通管家采纳,获得10
19秒前
19秒前
端木熙完成签到,获得积分20
21秒前
可爱的函函应助hysmoment采纳,获得10
21秒前
khurram发布了新的文献求助10
22秒前
24秒前
充电宝应助可耐的梦琪采纳,获得10
26秒前
小蘑菇应助khurram采纳,获得10
29秒前
30秒前
万能图书馆应助Ancestor采纳,获得10
30秒前
ding应助dududu采纳,获得10
30秒前
李昕123发布了新的文献求助10
31秒前
赵勇发布了新的文献求助10
35秒前
kdc完成签到,获得积分10
36秒前
h41692011完成签到 ,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3323989
关于积分的说明 10216917
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667934
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385