Macroscale double networks: highly dissipative soft composites

自愈水凝胶 增韧 韧性 材料科学 弹性体 复合材料 纳米复合材料 计算机科学 纳米技术 高分子化学
作者
Daniel R. King
出处
期刊:Polymer Journal [Springer Nature]
卷期号:54 (8): 943-955 被引量:11
标识
DOI:10.1038/s41428-022-00646-8
摘要

Hydrogels contain large amounts of water, making them useful in biomaterial applications. However, their inherent softness prevents their direct use in load-bearing applications. By incorporating toughening mechanisms through the double network concept, the mechanical properties of hydrogels have been greatly improved. In this Focus Review, our goal is to consider recent attempts to achieve hydrogel composites with further improved strength and toughness that could lead to the development of prosthetic biomaterials. We outline the way in which the double network concept improves the mechanical properties of gels and the specific mechanical traits that are enabled. We next review the current literature on soft composites, noting that the reinforcement mechanisms often differ from the double network concept, and summarize the types of properties that these materials can achieve. We also highlight the difficulties of working with hydrogels versus simple elastomers. Finally, we look at a recent subset of materials that utilize a mechanism analogous to the double network concept to achieve toughening on the macroscale. Macroscale double networks provide a unique opportunity to improve the mechanical properties of all soft materials for a wide range of applications. Sacrificial bonds break to dissipate energy and can increase the toughness of materials. Incorporating sacrificial bonds into hydrogels through the double network process enabled the first extremely tough hydrogels. In this Focus Review, we discuss the nature of sacrificial bonds, and how they can be used on the macroscale to enable tough soft composite materials. By matching the essence of the double network concept, we can make tough materials from macroscale composites for biomedical and engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明面包发布了新的文献求助10
刚刚
于无声处发布了新的文献求助10
刚刚
风清扬发布了新的文献求助10
1秒前
今后应助醉熏的皓轩采纳,获得10
1秒前
stars完成签到,获得积分10
1秒前
AAAA完成签到,获得积分20
1秒前
相爱就永远在一起完成签到,获得积分10
1秒前
李铃锐发布了新的文献求助10
1秒前
chengzi完成签到,获得积分10
2秒前
搜集达人应助净尤利安采纳,获得10
3秒前
t通发布了新的文献求助10
3秒前
3秒前
yimuyixiu发布了新的文献求助10
4秒前
vicky完成签到,获得积分10
4秒前
aaa发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
8秒前
开心元菱发布了新的文献求助40
8秒前
完美世界应助AAAA采纳,获得20
9秒前
10秒前
11秒前
Galaxy完成签到,获得积分10
12秒前
爽哥发布了新的文献求助30
13秒前
13秒前
14秒前
顾矜应助Galaxy采纳,获得10
16秒前
Zed plus发布了新的文献求助10
16秒前
18秒前
fancy发布了新的文献求助10
19秒前
香蕉觅云应助净尤利安采纳,获得10
19秒前
Jiangtao完成签到,获得积分10
19秒前
uhne完成签到 ,获得积分10
21秒前
jsss完成签到,获得积分20
22秒前
DWJIANG发布了新的文献求助10
22秒前
YiqingGu完成签到 ,获得积分10
24秒前
cici0707完成签到,获得积分10
24秒前
Pursue完成签到,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5182047
求助须知:如何正确求助?哪些是违规求助? 4368868
关于积分的说明 13604361
捐赠科研通 4220308
什么是DOI,文献DOI怎么找? 2314602
邀请新用户注册赠送积分活动 1313343
关于科研通互助平台的介绍 1262000