How well can we predict earthquake site response so far? Machine learning vs physics-based modeling

参数统计 水准点(测量) 机器学习 试验装置 计算机科学 人工智能 随机森林 集合(抽象数据类型) 数据集 数据挖掘 统计 数学 地理 地图学 程序设计语言
作者
Chuanbin Zhu,Fabrice Cotton,Hiroshi Kawase,K. Nakano
出处
期刊:Earthquake Spectra [SAGE]
卷期号:39 (1): 478-504 被引量:31
标识
DOI:10.1177/87552930221116399
摘要

In site-specific site-response assessments, observation-based site-specific approaches requiring a target–reference recording pair or a regional recording network cannot be implemented at many sites of interest. Thus, various estimation techniques have to be used. How effective are these techniques in predicting site-specific site responses (average over many earthquakes)? To address this question, we conduct a systematic comparison using a large data set which consists of detailed site metadata and Fourier outcrop linear site responses based on observations at 1725 K-NET and KiK-net sites. We first develop machine learning (i.e. random forest ( RF)) amplification models on a training data set (1580 sites). Then we test and compare their predictive powers at 145 independent testing sites with that of the one-dimensional (1D) ground response analysis (GRA). The standard deviation of residuals between observations and predictions, that is, between-site (site-to-site or inter-site) variability, is used as the benchmark. Results show that the machine learning model using a few predictor variables, surface roughness, peak frequency f P, HV , V S 30 , and depth Z 2.5 achieves better performance than the physics-based modeling (GRA) using detailed 1D velocity profiles. This implies that machine learning can be more effective in using existing site information than 1D GRA which is inflicted by a high level of parametric and modeling uncertainties. This finding warrants the further exploration of machine learning in site effect characterization, especially on model transferability across different regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助ahxb采纳,获得10
1秒前
RenWeng发布了新的文献求助30
2秒前
2秒前
2秒前
2秒前
2秒前
无辜的夜绿完成签到,获得积分10
3秒前
Elaine完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
6秒前
吴成完成签到,获得积分10
6秒前
小二郎应助NXK采纳,获得10
7秒前
金金金发布了新的文献求助10
7秒前
雪白十八发布了新的文献求助10
8秒前
归尘发布了新的文献求助30
8秒前
量子星尘发布了新的文献求助10
9秒前
好学的猪完成签到,获得积分10
10秒前
ZCM发布了新的文献求助10
12秒前
希音发布了新的文献求助10
13秒前
你好完成签到,获得积分20
13秒前
所所应助云野采纳,获得10
16秒前
16秒前
17秒前
solitudetiny完成签到,获得积分20
17秒前
Shirley应助RenWeng采纳,获得30
17秒前
香蕉觅云应助33采纳,获得10
17秒前
Severan完成签到,获得积分10
17秒前
桃井尤川完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
无极微光应助qqaeao采纳,获得60
21秒前
研友_VZG7GZ应助小王采纳,获得10
21秒前
21秒前
单薄夜山完成签到,获得积分10
22秒前
22秒前
MQRR发布了新的文献求助10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416931
求助须知:如何正确求助?哪些是违规求助? 4532992
关于积分的说明 14137696
捐赠科研通 4449052
什么是DOI,文献DOI怎么找? 2440569
邀请新用户注册赠送积分活动 1432413
关于科研通互助平台的介绍 1409818