Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness: Elucidating the role of duplex aging treatment

延展性(地球科学) 材料科学 断裂韧性 极限抗拉强度 Laves相 韧性 沉淀硬化 冶金 复合材料 微观结构 金属间化合物 合金 蠕动
作者
Zhenbao Liu,Zhe Yang,Xiaohui Wang,Jianxiong Liang,Zhiyong Yang,Heng Wu,Gang Sha
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:928: 167135-167135 被引量:21
标识
DOI:10.1016/j.jallcom.2022.167135
摘要

Tuning thermal treatment schedule has been confirmed as an effective technical route for achieving optimum properties of steels. In the present work, the role of a unique duplex aging process on the enhanced strength-ductility synergy in a newly designed 2.2 GPa grade martensitic ultra-high strength stainless steel (UHSSS) was fully elucidated utilizing multi-scale characterization methods and various mechanical tests. Compared with the first aging-treated steel, the strength and ductility are synergistically enhanced after the second aging treatment due to increased volume fractions of Laves phase and reversed austenite as well as intensification of spinodal decomposition. Specifically, nanoprecipitates not only act as “obstacles” for dislocation movements, but also delay the deformation localization and necking instability, resulting in the dramatic increase of both strength (359 MPa for yield strength) and ductility (17% for reduction of area). The second aging-treated steel exhibited an impressive combination of mechanical properties: yield strength ~ 1876 MPa, ultimate tensile strength ~ 2259 MPa, elongation to fracture ~ 11.5%, reduction of area ~ 52%, and fracture toughness ~ 43 MPa·m 0.5 at ambient temperature. As revealed by the microstructural characterization, the aged steel is primarily strengthened by three distinct types of nanoprecipitates, including M 2 C, Laves phase, and α’ Cr domains. The strengthening contributions of these precipitates were quantitatively estimated in terms of Orowan dislocation looping or cutting mechanisms. It is found that Laves phase contributed the maximum strength increment induced by precipitation hardening. An accessible pathway consisting of duplex aging treatment and co-precipitation of multiple nanoprecipitates is thus validated to exploit high-performance UHSSSs. The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request. • A ductile 2.2 GPa grade ultra-high strength stainless steel (UHSSS) is newly developed • The steel possesses the optimum strength-fracture toughness among UHSSSs • The steel is synergistically strengthened by M2C, Laves phase, and α’Cr domains • Unique duplex aging treatment contributes to the enhanced strength-ductility synergy • Second aging favors the further precipitation of nanoparticles and reversed austenite
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实小鸽子完成签到 ,获得积分10
1秒前
Issac01发布了新的文献求助10
3秒前
Hello应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
孙燕应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
打卡下班应助科研通管家采纳,获得20
5秒前
5秒前
5秒前
5秒前
棠棠完成签到 ,获得积分10
7秒前
栗子完成签到 ,获得积分10
7秒前
8秒前
tangzanwayne完成签到 ,获得积分10
9秒前
小谢完成签到 ,获得积分10
10秒前
李李李李李完成签到,获得积分10
13秒前
echo完成签到,获得积分10
13秒前
14秒前
always发布了新的文献求助10
16秒前
万能图书馆应助历史真相采纳,获得10
16秒前
憨憨完成签到 ,获得积分10
16秒前
17秒前
QQ完成签到,获得积分10
21秒前
23秒前
25秒前
26秒前
hahaha完成签到,获得积分20
26秒前
jiao完成签到,获得积分10
26秒前
Jasper应助Issac01采纳,获得10
27秒前
大模型应助苹果采纳,获得10
27秒前
FnDs完成签到,获得积分10
27秒前
bono完成签到 ,获得积分10
27秒前
hahaha发布了新的文献求助10
29秒前
29秒前
32秒前
32秒前
34秒前
36秒前
37秒前
38秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4126291
求助须知:如何正确求助?哪些是违规求助? 3663886
关于积分的说明 11593318
捐赠科研通 3363474
什么是DOI,文献DOI怎么找? 1848222
邀请新用户注册赠送积分活动 912232
科研通“疑难数据库(出版商)”最低求助积分说明 827947