Mental health longitudinal trajectories and predictors in medical students: Latent growth mixture model analysis

潜在增长模型 心理健康 心理学 增长模型 心理模型 纵向研究 临床心理学 老年学 医学 精神科 发展心理学 数学 病理 数理经济学 认知科学
作者
Yinhai Chen,Ran Xu,Tong Zhou,Rong Huang,Lin Su,Xiong Ke
出处
期刊:Medical Education [Wiley]
标识
DOI:10.1111/medu.70047
摘要

Abstract Background The high‐pressure environment of medical education presents significant challenges to the long‐term psychological well‐being of medical students. Although anxiety and depression are well‐documented among medical students, few studies have explored the developmental trajectories of these symptoms over time. This study aims to explore the two‐year developmental trajectories of anxiety and depression symptoms in medical students and identify key predictors of these trajectories. Methods This longitudinal study involved 810 medical students from a Chinese medical school, with data collected over four waves spanning two years. A total of 730 students completed the baseline survey and were included in the analysis, yielding a valid response rate of 90.1%. Participants completed the Patient Health Questionnaire‐9 (PHQ‐9) for depression and the Generalized Anxiety Disorder‐7 (GAD‐7) scale for anxiety. Latent Growth Mixture Modelling (LGMM) was used to identify the latent trajectories of depression and anxiety symptoms, with full information maximum likelihood estimation applied to handle missing follow‐up data. Regression analysis was conducted to determine predictors of these trajectories. Results The four waves of data for both depression and anxiety symptoms fit the model well. Depression followed two trajectories: a slowly decreasing group (92.0%) and a significantly increasing group (8.0%). Anxiety exhibited three trajectories: a low level‐slow decreasing group (72.7%), a high level‐significantly decreasing group (21.2%) and a low level‐significantly increasing group (6.1%). Significant predictors of these trajectories included family structure, quality of relationships with parents and roommates, social support, past suicidal ideation and self‐harming behaviour. Higher levels of social support were associated with decreasing symptom trajectories, whereas poor family relationships and past suicidal ideation predicted increasing symptoms. Conclusions Depression and anxiety symptoms in medical students follow distinct developmental trajectories, providing a basis for targeted psychological interventions. Strengthening social support should be a priority for educational institutions and policymakers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助乔垣结衣采纳,获得30
1秒前
2秒前
核桃应助woshidahunzi采纳,获得10
2秒前
smileriver完成签到,获得积分10
3秒前
4秒前
4秒前
落泺发布了新的文献求助10
5秒前
善学以致用应助Jaden采纳,获得10
5秒前
月倚樱落时完成签到,获得积分10
5秒前
哈哈悦发布了新的文献求助10
5秒前
海德堡完成签到,获得积分10
7秒前
来来发布了新的文献求助10
9秒前
xia完成签到,获得积分10
9秒前
9秒前
温尔应助进击的小白菜采纳,获得10
10秒前
hhhuan完成签到,获得积分10
10秒前
keyanchong完成签到,获得积分10
10秒前
伶俐如南完成签到 ,获得积分10
11秒前
小谭完成签到 ,获得积分10
11秒前
莹晨完成签到 ,获得积分10
11秒前
ding应助嗡嗡嗡采纳,获得10
11秒前
junzilan完成签到,获得积分10
11秒前
好天气完成签到,获得积分20
11秒前
will发布了新的文献求助10
13秒前
慕青应助薄荷草莓糖采纳,获得10
15秒前
包容翰完成签到,获得积分10
15秒前
纳斯达克发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
19秒前
XIA完成签到 ,获得积分10
19秒前
rainyy应助整齐棉花糖采纳,获得10
19秒前
19秒前
19秒前
20秒前
搜集达人应助研友_842M4n采纳,获得10
20秒前
完美世界应助窗子以外采纳,获得10
21秒前
qwp发布了新的文献求助10
21秒前
lwioi完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472385
求助须知:如何正确求助?哪些是违规求助? 4574678
关于积分的说明 14347789
捐赠科研通 4502046
什么是DOI,文献DOI怎么找? 2466815
邀请新用户注册赠送积分活动 1454881
关于科研通互助平台的介绍 1429206