已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advances in digital twinning for bearing fault diagnosis: a literature review

晶体孪晶 方位(导航) 断层(地质) 计算机科学 材料科学 地质学 地震学 人工智能 复合材料 微观结构
作者
Deqiang He,Cheng Dai,Jinxin Wu,Y. Zhuang,Zhenzhen Jin
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (9): 092001-092001
标识
DOI:10.1088/1361-6501/adfaf8
摘要

Abstract Bearing reliability is fundamental to guaranteeing the secure and efficient function of equipment. As industrial settings become increasingly intricate, fault diagnosis methods for bearings must evolve to offer greater precision and adaptability. Currently, the bearing fault diagnosis domain faces several challenges, including a shortage of failure data, high levels of environmental noise, and models that offer limited interpretability. Recently, digital twin (DT)—an innovative approach that synergistically combines various advanced techniques—has increasingly attracted attention as a promising solution to these issues. This paper begins by examining the evolution and practical applications of bearing fault diagnosis technologies. It first outlines the fundamental concepts of DT technology and fault diagnosis, detailing their historical development and the critical techniques involved. Next, this paper provides a comprehensive review of mainstream approaches to bearing fault diagnosis from two key perspectives: signal processing techniques and data-driven methods, outlining their respective strengths and limitations. To tackle the inherent challenges of these methods, existing DT systems for bearing fault diagnosis are categorized from a modeling standpoint. In addition, a practical DT implementation framework suited to real-world industrial applications is proposed. The paper further analyzes critical research challenges and offers targeted strategies and future directions. Overall, this work aims to offer both theoretical insights and practical guidance for advancing the integration of DT technology into intelligent bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助hotdx采纳,获得10
1秒前
1秒前
小李完成签到 ,获得积分10
2秒前
英俊的铭应助sun采纳,获得10
2秒前
SONNG发布了新的文献求助10
2秒前
lanruo关注了科研通微信公众号
2秒前
HW完成签到 ,获得积分10
2秒前
科研通AI5应助海茵采纳,获得30
4秒前
乐乐应助夏就夏吧采纳,获得10
5秒前
6秒前
orixero应助LDDDGR采纳,获得10
6秒前
7秒前
木木完成签到,获得积分10
7秒前
7秒前
bbb完成签到 ,获得积分10
7秒前
8秒前
Dr.zhou完成签到,获得积分10
10秒前
11秒前
zkx发布了新的文献求助10
11秒前
wop111发布了新的文献求助10
12秒前
浮游应助寒冷晓凡采纳,获得10
13秒前
畅快手套发布了新的文献求助10
14秒前
mahliya完成签到,获得积分10
14秒前
Heart_of_Stone完成签到 ,获得积分10
14秒前
15秒前
niming发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
deway发布了新的文献求助10
17秒前
希希完成签到 ,获得积分10
18秒前
18秒前
从容襄完成签到,获得积分10
18秒前
马少兴关注了科研通微信公众号
19秒前
hotdx发布了新的文献求助10
19秒前
爆米花应助DY_5354采纳,获得10
20秒前
ecnu搬砖人完成签到,获得积分10
20秒前
廖书香完成签到,获得积分10
21秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4868779
求助须知:如何正确求助?哪些是违规求助? 4160150
关于积分的说明 12900745
捐赠科研通 3914553
什么是DOI,文献DOI怎么找? 2149921
邀请新用户注册赠送积分活动 1168383
关于科研通互助平台的介绍 1070787