Alternating Direction Unfolding with a Cross Spectral Attention Prior for Dual-Camera Compressive Hyperspectral Imaging

高光谱成像 人工智能 计算机视觉 光谱成像 对偶(语法数字) 全光谱成像 遥感 计算机科学 压缩传感 地质学 文学类 艺术
作者
Yubo Dong,Dahua Gao,Danhua Liu,Yanli Liu,Guangming Shi
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3597775
摘要

Coded Aperture Snapshot Spectral Imaging (CASSI) multiplexes 3D Hyperspectral Images (HSIs) into a 2D sensor to capture dynamic spectral scenes, which, however, sacrifices the spatial information. Dual-Camera Compressive Hyperspectral Imaging (DCCHI) enhances CASSI by incorporating a Panchromatic (PAN) camera to compensate for the loss of spatial information in CASSI. However, the dual-camera structure of DCCHI disrupts the diagonal property of the product of the sensing matrix and its transpose, making it difficult to efficiently and accurately solve the data subproblem in closed-form and thereby hindering the application of model-based methods and Deep Unfolding Networks (DUNs) that rely on such a closed-form solution. To address this issue, we propose an Alternating Direction DUN, named ADRNN, which decouples the imaging model of DCCHI into a CASSI subproblem and a PAN subproblem. The ADRNN alternately solves data terms analytically and a joint prior term in these subproblems. Additionally, we propose a Cross Spectral Transformer (XST) to exploit the joint prior. The XST utilizes cross spectral attention to exploit the correlation between the compressed HSI and the PAN image, and incorporates Grouped-Query Attention (GQA) to alleviate the burden of parameters and computational cost brought by impartially treating the compressed HSI and the PAN image. Furthermore, we built a real DCCHI system and captured large-scale indoor and outdoor scenes for future academic research. Extensive experiments on both simulation and real datasets demonstrate that the proposed method achieves state-of-the-art (SOTA) performance. The code and datasets have been open-sourced at: https://github.com/ShawnDong98/ADRNN-XST.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快快乐乐巴完成签到,获得积分10
刚刚
超级寻双完成签到 ,获得积分10
3秒前
研友_8Raw2Z发布了新的文献求助10
3秒前
小嘎发布了新的文献求助10
4秒前
luluyu完成签到,获得积分10
5秒前
5秒前
lalala发布了新的文献求助10
5秒前
7秒前
科研通AI5应助pppy采纳,获得30
7秒前
7秒前
susu完成签到,获得积分10
7秒前
8秒前
8秒前
脑洞疼应助苹果采纳,获得10
9秒前
9秒前
CodeCraft应助joyceee采纳,获得10
9秒前
10秒前
一一完成签到,获得积分20
11秒前
11秒前
11秒前
小嘎完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
susu发布了新的文献求助10
15秒前
15秒前
16秒前
diu完成签到,获得积分10
16秒前
炙热果汁发布了新的文献求助10
16秒前
huan发布了新的文献求助10
18秒前
18秒前
赵家慧发布了新的文献求助30
19秒前
20秒前
稳重向南完成签到,获得积分10
20秒前
张力发布了新的文献求助10
20秒前
CodeCraft应助Rainnnn采纳,获得10
22秒前
小马甲应助Rainnnn采纳,获得10
22秒前
知许解夏发布了新的文献求助10
22秒前
共享精神应助炙热果汁采纳,获得10
24秒前
小潘同学发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Environmental Health: Foundations for Public Health 1st 1500
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4338548
求助须知:如何正确求助?哪些是违规求助? 3847766
关于积分的说明 12016941
捐赠科研通 3488922
什么是DOI,文献DOI怎么找? 1914818
邀请新用户注册赠送积分活动 957736
科研通“疑难数据库(出版商)”最低求助积分说明 858118