Transforming [ 177 Lu]Lu‐PSMA‐617 treatment planning: Machine learning‐based radiodosiomics and swin UNETR using pretherapy PSMA positron emission tomography/computed tomography (PET/CT)

作者
Elmira Yazdani,Aryan Neizehbaz,Najme Karamzade‐Ziarati,Farshad Emami,Habibeh Vosoughi,Mahboobeh Asadi,Atefeh Mahmoudi,Mahdi Sadeghi,Saeed Reza Kheradpisheh,Parham Geramifar
出处
期刊:Medical Physics [Wiley]
卷期号:52 (10): e70030-e70030 被引量:1
标识
DOI:10.1002/mp.70030
摘要

Abstract Background Personalized pretreatment dosimetry planning is crucial for optimizing [ 177 Lu]Lu–prostate‐specific membrane antigen‐617 (Lu‐PSMA) radioligand therapy (RLT) in patients with metastatic castration‐resistant prostate cancer (mCRPC). Purpose This study addresses two goals. First, we develop a machine learning (ML)‐based pretreatment planning model to predict post‐therapy absorbed doses (ADs) in metastatic lesions by integrating clinical biomarkers (CBs) with radiomic features (RFs) and dosiomic features (DFs) extracted from [⁶⁸Ga]Ga‐PSMA‐11 (Ga‐PSMA) positron emission tomography/computed tomography (PET/CT), thereby improving predictive accuracy. Second, we develop a transformer‐based deep learning (DL) architecture to predict Monte Carlo (MC)‐derived dose rate maps (DRMs), minimizing reliance on computationally intensive MC simulations. Methods For the ML objective, retrospective posttreatment dosimetry data from 20 patients with mCRPC treated with Lu‐PSMA RLT were used as ground truth labels. Patient‐specific MC dosimetry was employed on Ga‐PSMA PET/CT images using the GATE v9.1 toolkit to generate DRMs. After image preprocessing, RFs and DFs were extracted from Ga‐PSMA CT images and DRMs using LIFEx v7.4.0. Multiple feature selection techniques, including recursive feature elimination (RFE), mutual information, Boruta, LASSO, and Elastic Net, were applied and evaluated. The Benjamini‐Hochberg correction ( q < 0.05) was used to control for false discovery rate following each method. Multiple nonlinear regression models were trained using leave‐one‐out cross‐validation (LOOCV), and model interpretability was assessed using SHAP and LIME radar plots. A shifted windows UNET Transformers (Swin UNETR) architecture with self‐supervised learning (SSL) pretraining was employed to predict voxel‐wise PET‐based DRMs for the DL objective. The model was fine‐tuned on MC‐labelled DRM data from 30 patients (including 10 additional cases) using 5‐fold cross‐validation. Results Among multiple feature selection strategies, RFE was ultimately selected for final modelling based on its superior predictive performance. The ensemble tree regressor (ETR) using selected CT RFs, PET DFs, and significant CBs achieved an R 2 = 0.82 and RMSE = 0.67 Gy/GBq. For DRM prediction, the SSL‐pretrained Swin UNETR achieved an R 2 of 0.97, NRMSE of 0.003 Gy/GBq, and a Gamma pass rate of 99.08%, closely matching MC‐derived DRMs. Conclusions Integrating ML‐based radiodosiomics and transformer‐based DL enables accurate, efficient lesion AD and DRM prediction from pretherapy PET/CT, supporting personalized Lu‐PSMA RLT planning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助不建在的牛马采纳,获得10
1秒前
He完成签到 ,获得积分10
1秒前
呓语完成签到,获得积分10
1秒前
为医消得人憔悴完成签到,获得积分10
1秒前
烟花应助是我呀吼采纳,获得10
2秒前
2秒前
2秒前
liuxl发布了新的文献求助10
2秒前
祥小哥完成签到,获得积分10
2秒前
2秒前
3秒前
Kei应助medlive2020采纳,获得10
4秒前
skkkk发布了新的文献求助10
4秒前
李子潭完成签到,获得积分10
4秒前
小嚣张发布了新的文献求助10
4秒前
bkagyin应助宋鸣鸣采纳,获得10
5秒前
Eternity完成签到,获得积分10
5秒前
王半书完成签到 ,获得积分10
6秒前
袁洋发布了新的文献求助10
6秒前
科研通AI6应助张某采纳,获得10
6秒前
money完成签到 ,获得积分10
6秒前
慕青应助LS采纳,获得10
6秒前
6秒前
阿达达瓦完成签到,获得积分20
7秒前
nini发布了新的文献求助10
7秒前
Gu发布了新的文献求助10
7秒前
今天只做一件事完成签到,获得积分0
7秒前
甜蜜的阳光完成签到,获得积分10
7秒前
顾矜应助qingqing采纳,获得50
8秒前
zl123发布了新的文献求助10
8秒前
8秒前
iuiuiu完成签到,获得积分10
8秒前
PONY完成签到,获得积分10
8秒前
9秒前
下载文章即可完成签到,获得积分10
9秒前
奶萌兔兔酱完成签到,获得积分10
9秒前
灵波完成签到 ,获得积分10
9秒前
9秒前
XNDDY完成签到,获得积分10
9秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388431
求助须知:如何正确求助?哪些是违规求助? 4510493
关于积分的说明 14035669
捐赠科研通 4421255
什么是DOI,文献DOI怎么找? 2428741
邀请新用户注册赠送积分活动 1421317
关于科研通互助平台的介绍 1400559