亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transforming [ 177 Lu]Lu‐PSMA‐617 treatment planning: Machine learning‐based radiodosiomics and swin UNETR using pretherapy PSMA positron emission tomography/computed tomography (PET/CT)

作者
Elmira Yazdani,Aryan Neizehbaz,Najme Karamzade‐Ziarati,Farshad Emami,Habibeh Vosoughi,Mahboobeh Asadi,Atefeh Mahmoudi,Mahdi Sadeghi,Saeed Reza Kheradpisheh,Parham Geramifar
出处
期刊:Medical Physics [Wiley]
卷期号:52 (10): e70030-e70030 被引量:4
标识
DOI:10.1002/mp.70030
摘要

Abstract Background Personalized pretreatment dosimetry planning is crucial for optimizing [ 177 Lu]Lu–prostate‐specific membrane antigen‐617 (Lu‐PSMA) radioligand therapy (RLT) in patients with metastatic castration‐resistant prostate cancer (mCRPC). Purpose This study addresses two goals. First, we develop a machine learning (ML)‐based pretreatment planning model to predict post‐therapy absorbed doses (ADs) in metastatic lesions by integrating clinical biomarkers (CBs) with radiomic features (RFs) and dosiomic features (DFs) extracted from [⁶⁸Ga]Ga‐PSMA‐11 (Ga‐PSMA) positron emission tomography/computed tomography (PET/CT), thereby improving predictive accuracy. Second, we develop a transformer‐based deep learning (DL) architecture to predict Monte Carlo (MC)‐derived dose rate maps (DRMs), minimizing reliance on computationally intensive MC simulations. Methods For the ML objective, retrospective posttreatment dosimetry data from 20 patients with mCRPC treated with Lu‐PSMA RLT were used as ground truth labels. Patient‐specific MC dosimetry was employed on Ga‐PSMA PET/CT images using the GATE v9.1 toolkit to generate DRMs. After image preprocessing, RFs and DFs were extracted from Ga‐PSMA CT images and DRMs using LIFEx v7.4.0. Multiple feature selection techniques, including recursive feature elimination (RFE), mutual information, Boruta, LASSO, and Elastic Net, were applied and evaluated. The Benjamini‐Hochberg correction ( q < 0.05) was used to control for false discovery rate following each method. Multiple nonlinear regression models were trained using leave‐one‐out cross‐validation (LOOCV), and model interpretability was assessed using SHAP and LIME radar plots. A shifted windows UNET Transformers (Swin UNETR) architecture with self‐supervised learning (SSL) pretraining was employed to predict voxel‐wise PET‐based DRMs for the DL objective. The model was fine‐tuned on MC‐labelled DRM data from 30 patients (including 10 additional cases) using 5‐fold cross‐validation. Results Among multiple feature selection strategies, RFE was ultimately selected for final modelling based on its superior predictive performance. The ensemble tree regressor (ETR) using selected CT RFs, PET DFs, and significant CBs achieved an R 2 = 0.82 and RMSE = 0.67 Gy/GBq. For DRM prediction, the SSL‐pretrained Swin UNETR achieved an R 2 of 0.97, NRMSE of 0.003 Gy/GBq, and a Gamma pass rate of 99.08%, closely matching MC‐derived DRMs. Conclusions Integrating ML‐based radiodosiomics and transformer‐based DL enables accurate, efficient lesion AD and DRM prediction from pretherapy PET/CT, supporting personalized Lu‐PSMA RLT planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助科研通管家采纳,获得30
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
MchemG应助科研通管家采纳,获得30
6秒前
舒心的夜白完成签到,获得积分10
19秒前
50秒前
shunli完成签到 ,获得积分10
58秒前
1分钟前
TEMPO发布了新的文献求助10
1分钟前
李海平完成签到 ,获得积分10
1分钟前
敞敞亮亮完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
狂野丹翠应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
烟花应助Marshall采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
Marshall发布了新的文献求助10
3分钟前
3分钟前
半城烟火完成签到 ,获得积分10
3分钟前
3分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
香蕉觅云应助科研通管家采纳,获得30
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
karstbing发布了新的文献求助10
5分钟前
cy0824完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714938
求助须知:如何正确求助?哪些是违规求助? 5228707
关于积分的说明 15273909
捐赠科研通 4866079
什么是DOI,文献DOI怎么找? 2612676
邀请新用户注册赠送积分活动 1562848
关于科研通互助平台的介绍 1520139