吸引子
动力系统理论
计算机科学
油藏计算
动力系统(定义)
系列(地层学)
方案(数学)
利用
航程(航空)
控制理论(社会学)
集合(抽象数据类型)
信号(编程语言)
自适应控制
控制(管理)
人工神经网络
数学
人工智能
物理
循环神经网络
工程类
航空航天工程
程序设计语言
计算机安全
数学分析
生物
古生物学
量子力学
作者
Swarnendu Mandal,Swati Chauhan,Umesh Kumar Verma,Manish Dev Shrimali,Kazuyuki Aihara
出处
期刊:Chaos
[American Institute of Physics]
日期:2025-09-01
卷期号:35 (9)
被引量:1
摘要
We demonstrate a data-driven technique for adaptive control of dynamical systems that exploits the reservoir computing method. We show that a reservoir computer can be trained to predict a system parameter from the time series. Subsequently, a control signal based on the predicted parameter can be used as a feedback to the dynamical system to lead it to a target state. Our results show that the dynamical system can be controlled throughout a wide range of attractor types. One set of training data consisting of only a few time series corresponding to the known parameter values enables our scheme to control a dynamical system to an arbitrary target attractor starting from any other initial attractor. In addition to numerical results, we implement our scheme in real-world systems, such as a Rössler system, realized in an electronic circuit to demonstrate the effectiveness of our approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI