漏斗
离子
固态
材料科学
电子
国家(计算机科学)
纳米技术
化学物理
工程物理
光电子学
化学工程
化学
物理
计算机科学
核物理学
工程类
有机化学
算法
作者
Yiwang Chen,Ji Qian,Ke Wang,Tianyan Xue,Zhengqiang Hu,Fengling Zhang,Lian Tong,Xiangbin Pan,Teng Zhao,Li Li,Feng Wu,Renjie Chen
出处
期刊:eScience
[Elsevier]
日期:2025-07-15
卷期号:6 (1): 100452-100452
被引量:6
标识
DOI:10.1016/j.esci.2025.100452
摘要
Solid-state lithium metal batteries face challenges from irreversible interfacial degradation and sluggish ion transport. We propose an electron-funnel-mediated anion confinement strategy via atomic-level electronic field engineering. Incorporating electron-withdrawing –NO2 groups into Zr-based frameworks induces a 0.38 eV upward d-band center shift, generating a quantum-confined electrostatic gradient that polarizes TFSI− anions. This reduces TFSI− decomposition energy barrier (ΔG: −0.35 → −1.22 eV), selectively promoting LiF nucleation while suppressing side reactions. Concurrently, Zr4+-PEO Lewis interactions disrupt polymer crystallinity, enhancing ionic conductivity and Li+ transference number. Cryo-TEM tomography and TOF-SIMS mapping reveal a fractal LiF-rich interphase enabling dendrite-free lithium plating for > 11,000 h with polarization < 40 mV. LiFePO4 full cells achieve 86.3% capacity retention after 400 cycles at 1C (1.3 mAh cm−2). This work establishes anion confinement as a universal framework synchronizing ion transport and interfacial durability, advancing practical solid-state batteries with exceptional longevity.
科研通智能强力驱动
Strongly Powered by AbleSci AI