PI3K/AKT/mTOR通路
认知功能衰退
神经炎症
氧化应激
转录组
缺氧(环境)
下调和上调
海马结构
核糖体蛋白s6
生物
小胶质细胞
神经科学
细胞生物学
化学
医学
内科学
内分泌学
信号转导
免疫学
炎症
生物化学
基因表达
痴呆
P70-S6激酶1
基因
氧气
疾病
有机化学
作者
Wenying Lv,Yuehong Ma,Dongtao Li,Kexin Xiong,Jing Cui,Shuyi Pan,Ningkun Zhang,Yang Li,Yu Chen,Dazhi Guo
摘要
ABSTRACT Background High‐altitude cerebral edema (HACE) leads to cognitive decline, but the underlying cellular and molecular mechanisms remain unclear. Methods We established a mouse model of HACE under hypobaric hypoxia (simulating at an altitude of 6000 m) and analyzed hippocampal changes using single‐cell RNA sequencing (scRNA‐seq) and spatial transcriptomics (ST) at 3 days and 7 days post‐exposure. Results Hypobaric hypoxia induced HACE and cognitive decline by altering the transcriptomic profiles and interactions of oligodendrocytes (MOL and MOL2) and neurons (ExN‐L6‐CT‐2). Early upregulation of PI3K/mTOR in oligodendrocytes mitigated Rps29‐bax‐mediated ribosomal stress and oxidative phosphorylation, promoting survival and myelin repair. Prolonged hypoxia suppressed PI3K/mTOR, triggering apoptosis/autophagy via oxidative phosphorylation and ribosomal stress. Enhanced Tnfrsf21‐App interactions between MOL2 and ExN‐L6‐CT‐2 exacerbated neuroinflammation and cognitive decline. Conclusions Our study reveals that HACE‐induced cognitive impairment is closely associated with dysregulated ribosomal stress and oxidative phosphorylation and impaired neuroactive ligand‐receptor interactions. Furthermore, we identify PI3K/mTOR dynamics, Rps29‐bax‐axis, and Tnfrsf21‐App as novel regulators, offering potential therapeutic targets.
科研通智能强力驱动
Strongly Powered by AbleSci AI