A Multimodal Predictive Model for Chronic Kidney Disease and Its Association With Vascular Complications in Patients With Type 2 Diabetes: Model Development and Validation Study in South Korea and the U.K.

医学 队列 接收机工作特性 肾脏疾病 糖尿病 危险系数 2型糖尿病 肾功能 内科学 机器学习 人工智能 内分泌学 置信区间 计算机科学
作者
Jaehyeong Cho,Selin Woo,Seung Ha Hwang,Soeun Kim,Hayeon Lee,Ji-Young Hwang,Jae-Won Kim,Min Seo Kim,Lee Smith,Sooji Lee,Jinseok Lee,Hong‐Hee Won,Sang Youl Rhee,Dong Keon Yon
出处
期刊:Diabetes Care [American Diabetes Association]
卷期号:48 (9): 1562-1570 被引量:2
标识
DOI:10.2337/dc25-0355
摘要

OBJECTIVE To develop a multimodal model to predict chronic kidney disease (CKD) in patients with type 2 diabetes mellitus (T2DM), given the limited research on this integrative approach. RESEARCH DESIGN AND METHODS We obtained multimodal data sets from Kyung Hee University Medical Center (n = 7,028; discovery cohort) for training and internal validation and UK Biobank (n = 1,544; validation cohort) for external validation. CKD was defined based on ICD-9 and ICD-10 codes and/or estimated glomerular filtration rate (eGFR) ≤60 mL/min/1.73 m2. We ensembled various deep learning models and interpreted their predictions using explainable artificial intelligence (AI) methods, including Shapley additive explanation values (SHAP) and gradient-weighted class activation mapping (Grad-CAM). Subsequently, we investigated the potential association between the model probability and vascular complications. RESULTS The multimodal model, which ensembles visual geometry group 16 and deep neural network, presented high performance in predicting CKD, with area under the receiver operating characteristic curve of 0.880 (95% CI 0.806–0.954) in the discovery cohort and 0.722 in the validation cohort. SHAP and Grad-CAM highlighted key predictors, including eGFR and optic disc, respectively. The model probability was associated with an increased risk of macrovascular complications (tertile 1 [T1]: adjusted hazard ratio, 1.42 [95% CI 1.06–1.90]; T2: 1.59 [1.17–2.16]; T3: 1.64 [1.20–2.26]) and microvascular complications (T3: 1.30 [1.02–1.67]). CONCLUSIONS Our multimodal AI model integrates fundus images and clinical data from binational cohorts to predict the risk of new-onset CKD within 5 years and associated vascular complications in patients with T2DM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大个应助不想打工采纳,获得10
1秒前
123发布了新的文献求助10
2秒前
嗯嗯完成签到,获得积分20
3秒前
Rain发布了新的文献求助10
3秒前
4秒前
哈哈哈完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
那个米完成签到,获得积分20
5秒前
斯文无敌发布了新的文献求助30
5秒前
6秒前
包容石头发布了新的文献求助10
7秒前
Janiuh发布了新的文献求助10
7秒前
7秒前
8秒前
科研小破白菜给科研小破白菜的求助进行了留言
8秒前
9秒前
Twonej应助丰富的安梦采纳,获得30
9秒前
10秒前
个性的紫菜应助0109采纳,获得10
11秒前
萧然完成签到,获得积分10
11秒前
沉默馒头发布了新的文献求助10
11秒前
12秒前
13秒前
Ava应助saber349采纳,获得10
13秒前
HUYAOWEI发布了新的文献求助10
14秒前
15秒前
15秒前
领导范儿应助ppttyy采纳,获得10
15秒前
daisy完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
山水之乐发布了新的文献求助10
17秒前
飞快的邴发布了新的文献求助10
17秒前
世界需要我完成签到,获得积分10
18秒前
今后应助zsl采纳,获得10
18秒前
19秒前
YC完成签到 ,获得积分10
19秒前
25号底片完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655855
求助须知:如何正确求助?哪些是违规求助? 4800784
关于积分的说明 15074114
捐赠科研通 4814288
什么是DOI,文献DOI怎么找? 2575593
邀请新用户注册赠送积分活动 1530977
关于科研通互助平台的介绍 1489613