A Multimodal Predictive Model for Chronic Kidney Disease and Its Association With Vascular Complications in Patients With Type 2 Diabetes: Model Development and Validation Study in South Korea and the U.K.

医学 队列 接收机工作特性 肾脏疾病 糖尿病 危险系数 2型糖尿病 肾功能 内科学 机器学习 人工智能 内分泌学 置信区间 计算机科学
作者
Jaehyeong Cho,Selin Woo,Seung Ha Hwang,Soeun Kim,Hayeon Lee,Ji-Young Hwang,Jae-Won Kim,Min Seo Kim,Lee Smith,Sooji Lee,Jinseok Lee,Hong‐Hee Won,Sang Youl Rhee,Dong Keon Yon
出处
期刊:Diabetes Care [American Diabetes Association]
卷期号:48 (9): 1562-1570 被引量:1
标识
DOI:10.2337/dc25-0355
摘要

OBJECTIVE To develop a multimodal model to predict chronic kidney disease (CKD) in patients with type 2 diabetes mellitus (T2DM), given the limited research on this integrative approach. RESEARCH DESIGN AND METHODS We obtained multimodal data sets from Kyung Hee University Medical Center (n = 7,028; discovery cohort) for training and internal validation and UK Biobank (n = 1,544; validation cohort) for external validation. CKD was defined based on ICD-9 and ICD-10 codes and/or estimated glomerular filtration rate (eGFR) ≤60 mL/min/1.73 m2. We ensembled various deep learning models and interpreted their predictions using explainable artificial intelligence (AI) methods, including Shapley additive explanation values (SHAP) and gradient-weighted class activation mapping (Grad-CAM). Subsequently, we investigated the potential association between the model probability and vascular complications. RESULTS The multimodal model, which ensembles visual geometry group 16 and deep neural network, presented high performance in predicting CKD, with area under the receiver operating characteristic curve of 0.880 (95% CI 0.806–0.954) in the discovery cohort and 0.722 in the validation cohort. SHAP and Grad-CAM highlighted key predictors, including eGFR and optic disc, respectively. The model probability was associated with an increased risk of macrovascular complications (tertile 1 [T1]: adjusted hazard ratio, 1.42 [95% CI 1.06–1.90]; T2: 1.59 [1.17–2.16]; T3: 1.64 [1.20–2.26]) and microvascular complications (T3: 1.30 [1.02–1.67]). CONCLUSIONS Our multimodal AI model integrates fundus images and clinical data from binational cohorts to predict the risk of new-onset CKD within 5 years and associated vascular complications in patients with T2DM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Tonald Yang发布了新的文献求助10
1秒前
冷艳的凡阳完成签到,获得积分10
2秒前
傲娇丹翠完成签到,获得积分10
2秒前
Yang发布了新的文献求助10
3秒前
一个火蓉果啊完成签到,获得积分10
4秒前
重要问筠完成签到,获得积分10
4秒前
Zhoujian发布了新的文献求助10
4秒前
5秒前
curry发布了新的文献求助10
5秒前
丘比特应助henry采纳,获得10
5秒前
Ying应助君莫笑采纳,获得10
5秒前
5秒前
lie完成签到,获得积分10
6秒前
我是老大应助sunyanghu369采纳,获得10
6秒前
DU完成签到,获得积分10
7秒前
老实的大白菜真实的钥匙完成签到,获得积分10
7秒前
米里迷路完成签到,获得积分10
7秒前
8秒前
wwx发布了新的文献求助10
8秒前
summor发布了新的文献求助10
9秒前
灵巧的柚子完成签到,获得积分20
9秒前
熊饼干完成签到,获得积分10
9秒前
苗条棒棒糖完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
12秒前
虚幻白玉完成签到,获得积分10
12秒前
FashionBoy应助super chan采纳,获得10
12秒前
13秒前
心灵美的大地完成签到,获得积分10
13秒前
14秒前
NexusExplorer应助张亚博采纳,获得10
14秒前
cyno发布了新的文献求助10
14秒前
14秒前
Yang完成签到,获得积分10
14秒前
852应助赖床鸭采纳,获得10
14秒前
_蝴蝶小姐完成签到,获得积分20
14秒前
Ying应助君莫笑采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057