Association of initial core volume on non-contrast CT using a deep learning algorithm with clinical outcomes in acute ischemic stroke: a potential tool for selection and prognosis?

医学 改良兰金量表 溶栓 冲程(发动机) 逻辑回归 优势比 内科学 算法 缺血性中风 缺血 心肌梗塞 计算机科学 机械工程 工程类
作者
Alan Flores,Xavier Ustrell,Laia Seró,Álvaro Suárez,Ylenia Avivar,Leonardo Cruz‐Criollo,Milagros Galecio‐Castillo,Jorge Cespedes,Judith Cendrero,Victor Salvia,Álvaro García‐Tornel,Marta Olivé‐Gadea,Pere Canals,Santiago Ortega‐Gutiérrez,M. Ribó
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:: jnis-023897
标识
DOI:10.1136/jnis-2025-023897
摘要

Background In an extended time window, contrast-based neuroimaging is valuable for treatment selection or prognosis in patients with stroke undergoing reperfusion treatment. However, its immediate availability remains limited, especially in resource-constrained regions. We sought to evaluate the association of initial core volume (ICV) measured on non-contrast computed tomography (NCCT) by a deep learning-based algorithm with outcomes in patients undergoing reperfusion treatment. Methods Consecutive patients who received reperfusion treatments were collected from a prospectively maintained registry in three comprehensive stroke centers from January 2021 to May 2024. ICV on admission was estimated on NCCT by a previously validated deep learning algorithm (Methinks). Outcomes of interest included favorable outcome (modified Rankin Scale score 0–2 at 90 days) and symptomatic intracranial hemorrhage (sICH). Results The study comprised 658 patients of mean (SD) age 72.7 (14.4) years and median (IQR) baseline National Institutes of Health Stroke Scale (NIHSS) score of 12 (6–19). Primary endovascular treatment was performed in 53.7% of patients and 24.9% received IV thrombolysis only. Patients with favorable outcomes had a lower mean (SD) automated ICV (aICV; 12.9 (26.9) mL vs 34.9 (40) mL, P<0.001). Lower aICV was associated with a favorable outcome (adjusted OR 0.983 (95% CI 0.975 to 0.992), P<0.001) after adjusted logistic regression. For every 1 mL increase in aICV, the odds of a favorable outcome decreased by 1.7%. Patients who experienced sICH had a higher mean (SD) aICV (47.8 (61.1) mL vs 20.5 (32) mL, P=0.001). Higher aICV was independently associated with sICH (adjusted OR 1.014 (95% CI 1.004 to 1.025), P=0.009) after adjusted logistic regression. For every 1 mL increase in aICV, the odds of sICH increased by 1.4%. Conclusion In patients with stroke undergoing reperfusion therapy, aICV assessment on NCCT predicts long-term outcomes and sICH. Further studies determining the potential role of aICV assessment to safely expand and simplify reperfusion therapies based on AI interpretation of NCCT may be justified.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KissesU完成签到 ,获得积分10
刚刚
落寞迎梦完成签到 ,获得积分10
1秒前
所谓发布了新的文献求助10
1秒前
小明同学完成签到,获得积分10
1秒前
苏苏完成签到,获得积分10
1秒前
大方小蘑菇完成签到,获得积分10
1秒前
bob发布了新的文献求助10
2秒前
葛力完成签到,获得积分10
2秒前
上官若男应助辛勤的剑采纳,获得10
3秒前
3秒前
耍酷的小土豆完成签到,获得积分10
3秒前
如意书桃完成签到 ,获得积分10
3秒前
huofuman完成签到,获得积分10
4秒前
TT完成签到,获得积分10
4秒前
duck0008发布了新的文献求助10
5秒前
hey发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
阿良完成签到,获得积分10
7秒前
水牛完成签到,获得积分10
7秒前
7秒前
Chien完成签到,获得积分10
7秒前
奋斗的雪曼完成签到,获得积分10
7秒前
清圆527完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
何思君完成签到,获得积分10
8秒前
just_cook完成签到,获得积分10
9秒前
马马马发布了新的文献求助10
10秒前
猫南北完成签到,获得积分10
10秒前
安详念蕾完成签到,获得积分10
11秒前
上官若男应助典雅的静采纳,获得10
11秒前
吕德华完成签到,获得积分10
11秒前
12秒前
windli完成签到,获得积分10
12秒前
徐自豪发布了新的文献求助10
12秒前
13秒前
13秒前
netrandwalk完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4890639
求助须知:如何正确求助?哪些是违规求助? 4174203
关于积分的说明 12954833
捐赠科研通 3936126
什么是DOI,文献DOI怎么找? 2159579
邀请新用户注册赠送积分活动 1177956
关于科研通互助平台的介绍 1083346