俘获
氧气
格子(音乐)
化学物理
析氧
材料科学
活性氧
化学
化学工程
纳米技术
物理化学
物理
有机化学
电化学
生态学
生物化学
电极
声学
工程类
生物
作者
Zhongfeng Wang,Mingming Wang,Xinyi Li,Hong Huang,Xiaoyuan Sun,Jizheng Feng,S.J. Liu,Hao Luo,Lu Li,Xiaoxin Zou,Xiao Zhao
出处
期刊:Nano Letters
[American Chemical Society]
日期:2025-08-19
标识
DOI:10.1021/acs.nanolett.5c03287
摘要
RuO2 surpasses IrO2 in both activity and cost efficiency for the acidic oxygen evolution reaction (OER), yet its rapid degradation in membrane electrode assemblies (MEAs) under industrial current densities severely limits practical application. To resolve this activity-stability dilemma, we designed a dual-functional Al-RuO2 catalyst that simultaneously suppresses lattice oxygen oxidation and traps interfacial reactive water. Through strong Al-O bonding, Al dopants lock lattice oxygen and shift the OER pathway from the mixed adsorbate evolution mechanism (AEM) and lattice oxygen mechanism (LOM) on RuO2 to an exclusive AEM on Al-RuO2. This mechanistic transition inhibits Ru dissolution and preserves the structural integrity. Surface -OH and/or Lewis acidic Al sites dynamically trap free water via H-bonding and/or Lewis acid-base interactions to enhance the OER activity without sacrificing stability. Consequently, this Al-RuO2 achieves a 10-fold higher turnover frequency than RuO2 and high MEA performance (1.528 V@1.0 A cm-2, operation >600 h@1.0 A cm-2).
科研通智能强力驱动
Strongly Powered by AbleSci AI