采样(信号处理)
组分(热力学)
趋同(经济学)
过程(计算)
计算机科学
任务(项目管理)
出生-死亡过程
极限(数学)
指数函数
重要性抽样
应用数学
指数分布
数学优化
数学
统计物理学
统计
物理
蒙特卡罗方法
工程类
数学分析
量子力学
人口
人口学
系统工程
滤波器(信号处理)
社会学
经济
计算机视觉
经济增长
操作系统
出处
期刊:Cornell University - arXiv
日期:2023-01-01
被引量:1
标识
DOI:10.48550/arxiv.2305.05529
摘要
Sampling a probability distribution with known likelihood is a fundamental task in computational science and engineering. Aiming at multimodality, we propose a new sampling method that takes advantage of both birth-death process and exploration component. The main idea of this method is \textit{look before you leap}. We keep two sets of samplers, one at warmer temperature and one at original temperature. The former one serves as pioneer in exploring new modes and passing useful information to the other, while the latter one samples the target distribution after receiving the information. We derive a mean-field limit and show how the exploration process determines sampling efficiency. Moreover, we prove exponential asymptotic convergence under mild assumption. Finally, we test on experiments from previous literature and compared our methodology to previous ones.
科研通智能强力驱动
Strongly Powered by AbleSci AI