亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Fourier Domain Feature Approach for Human Activity Recognition & Fall Detection

支持向量机 计算机科学 人工智能 模式识别(心理学) 频域 分类器(UML) 日常生活活动 时域 机器学习 计算机视觉 心理学 精神科
作者
Asma Khtun,Sk. Golam Sarowar Hossain
标识
DOI:10.1109/spin57001.2023.10116360
摘要

Commonly, the senses of vision and hearing decrease as the age increase of a human. The most affected organs are hearing and vision due to aging. Elder people consequence a variety of problems while living Activities of Daily Living (ADL) for the reason of age, sense, loneliness and cognitive changes. These cause the risk to ADL which leads to several falls. Getting real life fall data is a difficult process and are not available whereas simulated falls become ubiquitous to evaluate the proposed methodologies. From the literature review, it is investigated that most of the researchers used raw and energy features (time domain features) of the signal data as those are most discriminating. However, in real life situations fall signal may be noisy than the current simulated data. Hence the result using raw feature may dramatically changes when using in a real life scenario. This research is using frequency domain Fourier coefficient features to differentiate various human activities of daily life. The feature vector constructed in this article using that the Fast Fourier Transform are robust to noise, level of detail representation and rotation invariant. In this research, two different supervised classifiers kNN and SVM are used for evaluating the method. Two standard publicly available datasets are used for benchmark analysis. This research shows more discriminating results are obtained applying kNN classifier than the SVM classifier. Various standard measure including Standard Accuracy (SA), Macro Average Accuracy (MAA), Sensitivity (SE) and Specificity (SP) has been accounted. In all cases, the proposed method outperforms energy features whereas competitive results are shown with raw features. It is also noticed that the proposed method performs better than the recently risen deep learning approach in which data augmentation method were not used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
木子完成签到 ,获得积分10
7秒前
缥缈的绿兰完成签到,获得积分10
21秒前
22秒前
雨柏发布了新的文献求助10
25秒前
假期会发芽完成签到 ,获得积分10
28秒前
28秒前
李子明应助无语采纳,获得10
28秒前
yang发布了新的文献求助30
32秒前
孤独如曼完成签到 ,获得积分10
32秒前
PhD_Lee73完成签到 ,获得积分10
38秒前
wr781586完成签到 ,获得积分10
38秒前
文静不斜完成签到,获得积分10
45秒前
47秒前
moiumuio完成签到,获得积分10
48秒前
研友_ndDGVn完成签到 ,获得积分10
49秒前
Jenlisa完成签到 ,获得积分10
57秒前
养生不息完成签到,获得积分10
1分钟前
yang完成签到,获得积分10
1分钟前
大渡河完成签到 ,获得积分10
1分钟前
脑洞疼应助yang采纳,获得10
1分钟前
1分钟前
Crane发布了新的文献求助10
1分钟前
1分钟前
leoskrrr完成签到 ,获得积分10
1分钟前
小葡萄完成签到 ,获得积分10
1分钟前
1分钟前
小马甲应助明白那就采纳,获得10
1分钟前
1分钟前
1分钟前
sue太那个了叭完成签到,获得积分10
1分钟前
科研01应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
愉快的犀牛完成签到 ,获得积分10
1分钟前
阜睿完成签到 ,获得积分10
1分钟前
小晚完成签到,获得积分10
2分钟前
2分钟前
zho发布了新的文献求助10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919850
求助须知:如何正确求助?哪些是违规求助? 3464927
关于积分的说明 10935133
捐赠科研通 3193164
什么是DOI,文献DOI怎么找? 1764470
邀请新用户注册赠送积分活动 854936
科研通“疑难数据库(出版商)”最低求助积分说明 794524