FSTL3 is highly expressed in adipose tissue of individuals with overweight or obesity and is associated with inflammation

脂肪组织 超重 内科学 脂肪细胞 内分泌学 炎症 肥胖 医学 肿瘤坏死因子α 白色脂肪组织 全身炎症
作者
Xiaoya Li,Hongwei Zhang,Xiaojing Ma,Yufei Wang,Xiaodong Han,Ying Yang,Haoyong Yu,Yuqian Bao
出处
期刊:Obesity [Wiley]
卷期号:31 (1): 171-183 被引量:9
标识
DOI:10.1002/oby.23598
摘要

Abstract Objective This study aimed to investigate the expression of follistatin‐like 3 (FSTL3) in adipose tissue in individuals with overweight or obesity and to explore the role of FSTL3 in human adipocytes, as well as the relationship between serum FSTL3 levels and fat distribution and inflammation. Methods This study enrolled 236 individuals (171 with overweight or obesity; aged 18–67 years). Bulk transcriptome sequencing was performed on subcutaneous and visceral adipose tissue. The function of FSTL3 was studied in human adipocytes. Serum FSTL3 levels were measured using enzyme‐linked immunosorbent assay. Results Adipose FTSL3 expression was higher in individuals with overweight or obesity than in individuals with normal weight. FSTL3 was mainly expressed in mature adipocytes and stimulated by tumor necrosis factor alpha (TNFα). FSTL3 suppressed inflammatory responses in human adipocytes, whereas FSTL3 knockdown promoted inflammatory responses. Serum FSTL3 levels were correlated with adipose FTSL3 expression and obesity‐related indicators (all p < 0.05). Multiple linear regression analysis showed that serum FSTL3 levels were independently associated with the visceral fat area and serum TNFα levels (both p < 0.05). Conclusions FSTL3 was highly expressed in adipose tissue in individuals with overweight or obesity and could suppress adipocyte inflammation. Serum FSTL3 levels might be considered as a biomarker of visceral obesity and inflammation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangqing发布了新的文献求助10
1秒前
英俊的铭应助www采纳,获得10
2秒前
2秒前
大模型应助羽蒙采纳,获得10
2秒前
无曲发布了新的文献求助10
3秒前
xieyuanxing完成签到,获得积分10
3秒前
4秒前
godsong5287发布了新的文献求助10
5秒前
6秒前
蕃薯叶发布了新的文献求助10
7秒前
山芋发布了新的文献求助10
7秒前
7秒前
紫色哀伤完成签到,获得积分10
8秒前
9秒前
王军鹏完成签到 ,获得积分10
9秒前
够了发布了新的文献求助10
10秒前
10秒前
imzzy发布了新的文献求助10
11秒前
爆米花应助moumou采纳,获得10
11秒前
12秒前
LY0201发布了新的文献求助10
12秒前
xx发布了新的文献求助10
13秒前
tonight发布了新的文献求助10
14秒前
斑马发布了新的文献求助20
15秒前
15秒前
Cherish完成签到,获得积分10
15秒前
16秒前
16秒前
jingli发布了新的文献求助10
17秒前
18秒前
充电宝应助nbing采纳,获得10
18秒前
够了完成签到,获得积分10
18秒前
刻苦大叔发布了新的文献求助10
19秒前
情怀应助冯岗采纳,获得10
19秒前
YouHa完成签到,获得积分20
20秒前
烂漫的寻冬完成签到,获得积分20
22秒前
LY0201完成签到,获得积分20
23秒前
23秒前
ChrisKim完成签到,获得积分10
24秒前
爆米花应助叭叭采纳,获得10
24秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836238
求助须知:如何正确求助?哪些是违规求助? 3378602
关于积分的说明 10505076
捐赠科研通 3098233
什么是DOI,文献DOI怎么找? 1706347
邀请新用户注册赠送积分活动 820967
科研通“疑难数据库(出版商)”最低求助积分说明 772349