Meta-Learning Multi-Scale Radiology Medical Image Super-Resolution

计算机科学 放大倍数 分辨率(逻辑) 人工智能 概化理论 比例(比率) 图像分辨率 深度学习 医学影像学 算法 计算机视觉 数学 统计 物理 量子力学
作者
Lei Deng,Yuanzhi Zhang,Xin Yang,Shu-Chun Huang,Jing Wang
出处
期刊:Computers, materials & continua 卷期号:75 (2): 2671-2684
标识
DOI:10.32604/cmc.2023.036642
摘要

High-resolution medical images have important medical value, but are difficult to obtain directly. Limited by hardware equipment and patient’s physical condition, the resolution of directly acquired medical images is often not high. Therefore, many researchers have thought of using super-resolution algorithms for secondary processing to obtain high-resolution medical images. However, current super-resolution algorithms only work on a single scale, and multiple networks need to be trained when super-resolution images of different scales are needed. This definitely raises the cost of acquiring high-resolution medical images. Thus, we propose a multi-scale super-resolution algorithm using meta-learning. The algorithm combines a meta-learning approach with an enhanced depth of residual super-resolution network to design a meta-upscale module. The meta-upscale module utilizes the weight prediction property of meta-learning and is able to perform the super-resolution task of medical images at any scale. Meanwhile, we design a non-integer mapping relation for super-resolution, which allows the network to be trained under non-integer magnification requirements. Compared to the state-of-the-art single-image super-resolution algorithm on computed tomography images of the pelvic region. The meta-learning multiscale super-resolution algorithm obtained a surpassing of about 2% at a smaller model volume. Testing on different parts proves the high generalizability of our algorithm. Multi-scale super-resolution algorithms using meta-learning can compensate for hardware device defects and reduce secondary harm to patients while obtaining high-resolution medical images. It can be of great use in imaging related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
humengxiao发布了新的文献求助10
5秒前
Jasper应助kai采纳,获得10
8秒前
LIJINGGE发布了新的文献求助10
8秒前
Sss发布了新的文献求助10
10秒前
11秒前
等待霸完成签到,获得积分10
15秒前
16秒前
zhang完成签到,获得积分20
16秒前
小蘑菇应助Raymond采纳,获得10
20秒前
21秒前
22秒前
24秒前
LIJINGGE发布了新的文献求助10
26秒前
海人发布了新的文献求助10
28秒前
29秒前
动听半雪发布了新的文献求助10
30秒前
33秒前
librahapper发布了新的文献求助10
38秒前
研友_8QxN1Z完成签到,获得积分10
39秒前
慕青应助直率的花生采纳,获得10
41秒前
yyy完成签到,获得积分10
41秒前
44秒前
运敬完成签到 ,获得积分10
47秒前
xiong完成签到,获得积分10
48秒前
研友_VZG7GZ应助librahapper采纳,获得10
49秒前
50秒前
匹诺曹完成签到 ,获得积分10
53秒前
ni关注了科研通微信公众号
55秒前
55秒前
55秒前
情怀应助闪闪雅阳采纳,获得10
56秒前
56秒前
59秒前
54zxy完成签到,获得积分10
1分钟前
1分钟前
栗栗栗知应助科研通管家采纳,获得30
1分钟前
1分钟前
bing完成签到 ,获得积分10
1分钟前
Raymond发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324313
关于积分的说明 10217843
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758401