亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Modality Speech Recognition Driven by Background Visual Scenes

模态(人机交互) 计算机科学 语音识别 人工智能 计算机视觉 自然语言处理
作者
Cheng Luo,Yiguang Liu,Wenhui Sun,Zhoujian Sun
标识
DOI:10.1109/icassp48485.2024.10446142
摘要

Visual information is often used as a complementary cue for automatic speech recognition in noisy environments. Most previous studies utilize visual information of target speakers (e.g., lip movements) to improve the recognition performance of audio-visual speech recognition (AVSR) models. However, it remains unclear whether visual information of background sound can benefit automatic speech recognition. Our study proceeds in this regard by constructing a new audiovisual dataset and devising an AVSR model. The new dataset, Audio-Visual Natural Scenes (abbreviated as AVNS) dataset, consists of 11 types of natural scenes (around 31.3 hours) and was recorded through professional recording devices. The AVNS dataset provides audio and visual signals of common background noises in natural acoustic scenes. The AVSR model was designed based on a representation learning framework called AV-HuBERT, which could fuse representations of audio and visual modalities for automatic speech recognition. In this work, we combined the AVNS dataset (providing background sound) with the largest benchmark LRS3 dataset (providing target speech) to create adverse noise conditions for the AVSR model. The results showed that incorporating visual information synchronized with background noises greatly improved model performance (reducing WER by up to 4.9%) in noisy environments. These findings demonstrate that noise-related visual information can contribute to model performance in automatic speech recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
40秒前
忧郁小鸽子完成签到,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
小马甲应助budingman采纳,获得10
2分钟前
小二郎应助budingman采纳,获得10
2分钟前
顾矜应助budingman采纳,获得10
2分钟前
共享精神应助budingman采纳,获得10
2分钟前
深情安青应助budingman采纳,获得10
2分钟前
CipherSage应助budingman采纳,获得10
2分钟前
2分钟前
柔弱烨霖发布了新的文献求助10
2分钟前
2分钟前
852应助budingman采纳,获得10
3分钟前
领导范儿应助budingman采纳,获得10
3分钟前
香蕉觅云应助budingman采纳,获得10
3分钟前
汉堡包应助budingman采纳,获得10
3分钟前
Owen应助budingman采纳,获得10
3分钟前
3分钟前
传奇3应助budingman采纳,获得10
3分钟前
Orange应助budingman采纳,获得10
3分钟前
Lucas应助budingman采纳,获得10
3分钟前
科研通AI5应助budingman采纳,获得10
3分钟前
江流有声发布了新的文献求助10
3分钟前
CodeCraft应助铉莉采纳,获得10
3分钟前
mashibeo完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798503
求助须知:如何正确求助?哪些是违规求助? 3343971
关于积分的说明 10318265
捐赠科研通 3060565
什么是DOI,文献DOI怎么找? 1679670
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763323