Cervical lymph node metastasis prediction from papillary thyroid carcinoma US videos: a prospective multicenter study

医学 甲状腺癌 接收机工作特性 转移 前瞻性队列研究 淋巴结 曲线下面积 放射科 内科学 甲状腺 癌症
作者
Mingbo Zhang,Zheling Meng,Yi Mao,Jiang Xue,Ning Xu,Qing‐Hua Xu,Jie Tian,Yukun Luo,Kun Wang
出处
期刊:BMC Medicine [BioMed Central]
卷期号:22 (1)
标识
DOI:10.1186/s12916-024-03367-2
摘要

Abstract Background Prediction of lymph node metastasis (LNM) is critical for individualized management of papillary thyroid carcinoma (PTC) patients to avoid unnecessary overtreatment as well as undesired under-treatment. Artificial intelligence (AI) trained by thyroid ultrasound (US) may improve prediction performance. Methods From September 2017 to December 2018, patients with suspicious PTC from the first medical center of the Chinese PLA general hospital were retrospectively enrolled to pre-train the multi-scale, multi-frame, and dual-direction deep learning (MMD-DL) model. From January 2019 to July 2021, PTC patients from four different centers were prospectively enrolled to fine-tune and independently validate MMD-DL. Its diagnostic performance and auxiliary effect on radiologists were analyzed in terms of receiver operating characteristic (ROC) curves, areas under the ROC curve (AUC), accuracy, sensitivity, and specificity. Results In total, 488 PTC patients were enrolled in the pre-training cohort, and 218 PTC patients were included for model fine-tuning ( n = 109), internal test ( n = 39), and external validation ( n = 70). Diagnostic performances of MMD-DL achieved AUCs of 0.85 (95% CI: 0.73, 0.97) and 0.81 (95% CI: 0.73, 0.89) in the test and validation cohorts, respectively, and US radiologists significantly improved their average diagnostic accuracy (57% vs. 60%, P = 0.001) and sensitivity (62% vs. 65%, P < 0.001) by using the AI model for assistance. Conclusions The AI model using US videos can provide accurate and reproducible prediction of cervical lymph node metastasis in papillary thyroid carcinoma patients preoperatively, and it can be used as an effective assisting tool to improve diagnostic performance of US radiologists. Trial registration We registered on the Chinese Clinical Trial Registry website with the number ChiCTR1900025592.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助24采纳,获得10
刚刚
2秒前
QianhWang1115关注了科研通微信公众号
3秒前
渣渣发布了新的文献求助10
4秒前
林铮完成签到,获得积分10
4秒前
5秒前
7秒前
乐乐应助爱撒娇的冰安采纳,获得10
10秒前
zm发布了新的文献求助10
12秒前
12秒前
Y哦莫哦莫完成签到,获得积分10
13秒前
16秒前
16秒前
魁梧的乐曲完成签到,获得积分10
17秒前
dengdengdeng发布了新的文献求助10
17秒前
18秒前
乐乐应助政政勇闯世界采纳,获得10
18秒前
sdbz001完成签到,获得积分10
19秒前
司徒诗蕾发布了新的文献求助10
20秒前
爱撒娇的冰安完成签到,获得积分20
21秒前
24发布了新的文献求助10
23秒前
坦率的跳跳糖完成签到 ,获得积分10
23秒前
隐形曼青应助nenoaowu采纳,获得10
25秒前
渣渣完成签到,获得积分10
26秒前
26秒前
27秒前
诚心的大炮完成签到,获得积分10
28秒前
rjj001022发布了新的文献求助10
30秒前
活泼半凡完成签到 ,获得积分10
30秒前
jenningseastera应助渣渣采纳,获得10
31秒前
Sygganggang发布了新的文献求助10
31秒前
尘扬完成签到,获得积分10
36秒前
慕青应助Leeon采纳,获得10
38秒前
wy完成签到 ,获得积分10
38秒前
38秒前
Sygganggang完成签到,获得积分10
39秒前
Tingshuo完成签到,获得积分20
41秒前
李爱国应助科研通管家采纳,获得10
42秒前
42秒前
科研通AI5应助科研通管家采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782204
求助须知:如何正确求助?哪些是违规求助? 3327628
关于积分的说明 10232604
捐赠科研通 3042558
什么是DOI,文献DOI怎么找? 1670052
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758854