Cervical lymph node metastasis prediction from papillary thyroid carcinoma US videos: a prospective multicenter study

医学 甲状腺癌 接收机工作特性 转移 前瞻性队列研究 淋巴结 曲线下面积 放射科 内科学 甲状腺 癌症
作者
Mingbo Zhang,Zheling Meng,Yi Mao,Jiang Xue,Ning Xu,Qing‐Hua Xu,Jie Tian,Yukun Luo,Kun Wang
出处
期刊:BMC Medicine [BioMed Central]
卷期号:22 (1) 被引量:14
标识
DOI:10.1186/s12916-024-03367-2
摘要

Abstract Background Prediction of lymph node metastasis (LNM) is critical for individualized management of papillary thyroid carcinoma (PTC) patients to avoid unnecessary overtreatment as well as undesired under-treatment. Artificial intelligence (AI) trained by thyroid ultrasound (US) may improve prediction performance. Methods From September 2017 to December 2018, patients with suspicious PTC from the first medical center of the Chinese PLA general hospital were retrospectively enrolled to pre-train the multi-scale, multi-frame, and dual-direction deep learning (MMD-DL) model. From January 2019 to July 2021, PTC patients from four different centers were prospectively enrolled to fine-tune and independently validate MMD-DL. Its diagnostic performance and auxiliary effect on radiologists were analyzed in terms of receiver operating characteristic (ROC) curves, areas under the ROC curve (AUC), accuracy, sensitivity, and specificity. Results In total, 488 PTC patients were enrolled in the pre-training cohort, and 218 PTC patients were included for model fine-tuning ( n = 109), internal test ( n = 39), and external validation ( n = 70). Diagnostic performances of MMD-DL achieved AUCs of 0.85 (95% CI: 0.73, 0.97) and 0.81 (95% CI: 0.73, 0.89) in the test and validation cohorts, respectively, and US radiologists significantly improved their average diagnostic accuracy (57% vs. 60%, P = 0.001) and sensitivity (62% vs. 65%, P < 0.001) by using the AI model for assistance. Conclusions The AI model using US videos can provide accurate and reproducible prediction of cervical lymph node metastasis in papillary thyroid carcinoma patients preoperatively, and it can be used as an effective assisting tool to improve diagnostic performance of US radiologists. Trial registration We registered on the Chinese Clinical Trial Registry website with the number ChiCTR1900025592.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
琼仔仔完成签到 ,获得积分10
1秒前
3秒前
linqitc发布了新的文献求助10
4秒前
愿祖国富强完成签到,获得积分10
4秒前
6秒前
小郭发布了新的文献求助10
7秒前
TS发布了新的文献求助10
9秒前
科研通AI6应助七月流火采纳,获得50
10秒前
李星翰完成签到,获得积分10
11秒前
Liben完成签到,获得积分20
12秒前
期待未来的自己应助HHCC采纳,获得10
15秒前
科研通AI2S应助HHCC采纳,获得10
15秒前
科研通AI2S应助HHCC采纳,获得10
15秒前
不倦应助HHCC采纳,获得10
15秒前
不倦应助HHCC采纳,获得10
16秒前
科研通AI2S应助HHCC采纳,获得30
16秒前
不倦应助HHCC采纳,获得10
16秒前
不倦应助HHCC采纳,获得10
16秒前
科研通AI2S应助HHCC采纳,获得10
16秒前
8R60d8应助HHCC采纳,获得10
16秒前
Zoe完成签到,获得积分10
18秒前
zzz完成签到,获得积分10
19秒前
在水一方应助小郭采纳,获得10
22秒前
25秒前
Liben关注了科研通微信公众号
26秒前
27秒前
英俊的铭应助第七个星球采纳,获得10
30秒前
百川发布了新的文献求助30
30秒前
31秒前
Jason完成签到,获得积分10
32秒前
丘比特应助hyhyhyhy采纳,获得10
33秒前
33秒前
38秒前
peng发布了新的文献求助10
38秒前
Daisy完成签到,获得积分10
40秒前
李子完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4438851
求助须知:如何正确求助?哪些是违规求助? 3911832
关于积分的说明 12149173
捐赠科研通 3558664
什么是DOI,文献DOI怎么找? 1953445
邀请新用户注册赠送积分活动 993297
科研通“疑难数据库(出版商)”最低求助积分说明 888707