Longitudinal Assessment of Tumor-Infiltrating Lymphocytes in Primary Breast Cancer Following Neoadjuvant Radiation Therapy

放射治疗 医学 肿瘤科 乳腺癌 新辅助治疗 肿瘤浸润淋巴细胞 内科学 癌症 免疫疗法
作者
Miki Yoneyama,Konstantinos Zormpas‐Petridis,Ruth Robinson,Faranak Sobhani,Elena Provenzano,Harriet Steel,Sara Lightowlers,Catherine Towns,Simón P. Castillo,Selvakumar Anbalagan,Tom Lund,Erik Wennerberg,Alan Melcher,Charlotte E. Coles,Ioannis Roxanis,Yinyin Yuan,Navita Somaiah
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:120 (3): 862-874 被引量:6
标识
DOI:10.1016/j.ijrobp.2024.04.065
摘要

Tumor-infiltrating lymphocytes (TILs) have prognostic significance in several cancers, including breast. Despite interest in combining radiotherapy with immunotherapy, little is known about the effect of radiotherapy itself on the tumor-immune microenvironment, including TILs. Here, we interrogated longitudinal dynamics of tumor-infiltrating and systemic lymphocytes in patient samples taken before, during, and after neoadjuvant radiotherapy (NART), from XXX and XXX breast clinical trials.We manually scored stromal TILs (sTILs) from longitudinal tumor samples using standardized guidelines, as well as deep learning-based scores at cell-level (cTIL) and cell- and tissue-level combination analysis (SuperTIL). In parallel, we interrogated absolute lymphocyte counts from routine blood tests at corresponding timepoints during treatment. Exploratory analyses studied the relationship between TILs and pathological complete response (pCR) and long-term outcomes.Patients receiving NART experienced a significant and uniform decrease in sTILs that did not recover at the time of surgery (P < 0.0001). This lymphodepletive effect was also mirrored in peripheral blood. Our "SuperTIL" deep learning score showed good concordance with manual sTILs, and importantly performed comparably to manual scores in predicting pCR from diagnostic biopsies. Analysis suggested an association between baseline sTILs and pCR, as well as sTILs at surgery and relapse, in patients receiving NART.This study provides novel insights into TIL dynamics in the context of NART in breast cancer, and demonstrates the potential for artificial intelligence to assist routine pathology. We have identified trends which warrant further interrogation and have a bearing on future radio-immunotherapy trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助Long采纳,获得10
刚刚
Lucas完成签到,获得积分10
刚刚
aaaaa完成签到,获得积分10
1秒前
小任性完成签到,获得积分10
3秒前
5秒前
火星上班发布了新的文献求助30
5秒前
小陈同学应助顺利白竹采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
qingli完成签到,获得积分10
7秒前
7秒前
DDDD发布了新的文献求助30
7秒前
8秒前
8秒前
火星上小土豆完成签到 ,获得积分10
8秒前
小凡发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
东郭南珍发布了新的文献求助10
13秒前
13秒前
Jasper应助fmax采纳,获得10
14秒前
15秒前
科研通AI6应助一只小西瓜采纳,获得10
15秒前
16秒前
Jackcaosky发布了新的文献求助30
17秒前
领导范儿应助elidan采纳,获得10
18秒前
18秒前
18秒前
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
CodeCraft应助科研通管家采纳,获得30
18秒前
领导范儿应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
七月流火应助科研通管家采纳,获得80
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5673096
求助须知:如何正确求助?哪些是违规求助? 4931657
关于积分的说明 15143422
捐赠科研通 4832403
什么是DOI,文献DOI怎么找? 2588211
邀请新用户注册赠送积分活动 1541923
关于科研通互助平台的介绍 1500013