已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An improved deep hashing model for image retrieval with binary code similarities

散列函数 计算机科学 二进制代码 深度学习 理论计算机科学 语义相似性 卷积神经网络 图像检索 人工智能 特征哈希 模式识别(心理学) 哈希表 数据挖掘 图像(数学) 二进制数 双重哈希 数学 算术 计算机安全
作者
Huawen Liu,Zongda Wu,Minghao Yin,Donghua Yu,Xinzhong Zhu,Jungang Lou
出处
期刊:Journal of Big Data [Springer Science+Business Media]
卷期号:11 (1)
标识
DOI:10.1186/s40537-024-00919-4
摘要

Abstract The exponential growth of data raises an unprecedented challenge in data analysis: how to retrieve interesting information from such large-scale data. Hash learning is a promising solution to address this challenge, because it may bring many potential advantages, such as extremely high efficiency and low storage cost, after projecting high-dimensional data to compact binary codes. However, traditional hash learning algorithms often suffer from the problem of semantic inconsistency, where images with similar semantic features may have different binary codes. In this paper, we propose a novel end-to-end deep hashing method based on the similarities of binary codes, dubbed CSDH (Code Similarity-based Deep Hashing), for image retrieval. Specifically, it extracts deep features from images to capture semantic information using a pre-trained deep convolutional neural network. Additionally, a hidden and fully connected layer is attached at the end of the deep network to derive hash bits by virtue of an activation function. To preserve the semantic consistency of images, a loss function has been introduced. It takes the label similarities, as well as the Hamming embedding distances, into consideration. By doing so, CSDH can learn more compact and powerful hash codes, which not only can preserve semantic similarity but also have small Hamming distances between similar images. To verify the effectiveness of CSDH, we evaluate CSDH on two public benchmark image collections, i.e., CIFAR-10 and NUS-WIDE, with five classic shallow hashing models and six popular deep hashing ones. The experimental results show that CSDH can achieve competitive performance to the popular deep hashing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助星火燎原采纳,获得10
5秒前
LSQ完成签到 ,获得积分10
5秒前
9秒前
无语的小熊猫完成签到 ,获得积分10
9秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
13秒前
甜甜圈发布了新的文献求助30
14秒前
忐忑的阑香完成签到,获得积分10
14秒前
juicetingting完成签到,获得积分10
15秒前
旺旺完成签到,获得积分10
15秒前
萝萝完成签到,获得积分10
15秒前
在水一方应助星火燎原采纳,获得10
18秒前
莫得感情发布了新的文献求助20
22秒前
29秒前
貔貅完成签到,获得积分10
30秒前
wzy完成签到 ,获得积分10
31秒前
科目三应助free1zhang采纳,获得10
32秒前
李健应助任性松鼠采纳,获得10
33秒前
34秒前
wanci应助星火燎原采纳,获得10
35秒前
夹心发布了新的文献求助10
35秒前
35秒前
cdercder应助忐忑的阑香采纳,获得10
37秒前
笨笨芯发布了新的文献求助10
38秒前
跳跳狗完成签到,获得积分20
39秒前
dxywan5发布了新的文献求助10
39秒前
42秒前
42秒前
ZYDS完成签到,获得积分20
43秒前
45秒前
SciGPT应助ZYDS采纳,获得30
45秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815339
求助须知:如何正确求助?哪些是违规求助? 3359155
关于积分的说明 10400562
捐赠科研通 3076791
什么是DOI,文献DOI怎么找? 1690017
邀请新用户注册赠送积分活动 813557
科研通“疑难数据库(出版商)”最低求助积分说明 767674