Learning Association Characteristics by Dynamic Hypergraph and Gated Convolution Enhanced Pairwise Attributes for Prediction of Disease-Related lncRNAs

成对比较 编码 卷积(计算机科学) 超图 图形 节点(物理) 计算机科学 疾病 人工智能 生物网络 构造(python库) 计算生物学 理论计算机科学 生物 数学 遗传学 医学 人工神经网络 基因 结构工程 离散数学 病理 工程类 程序设计语言
作者
Ping Xuan,Siyuan Lu,Hui Cui,Shuai Wang,Toshiya Nakaguchi,Tiangang Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (8): 3569-3578 被引量:5
标识
DOI:10.1021/acs.jcim.4c00245
摘要

As the long non-coding RNAs (lncRNAs) play important roles during the incurrence and development of various human diseases, identifying disease-related lncRNAs can contribute to clarifying the pathogenesis of diseases. Most of the recent lncRNA-disease association prediction methods utilized the multi-source data about the lncRNAs and diseases. A single lncRNA may participate in multiple disease processes, and multiple lncRNAs usually are involved in the same disease process synergistically. However, the previous methods did not completely exploit the biological characteristics to construct the informative prediction models. We construct a prediction model based on adaptive hypergraph and gated convolution for lncRNA-disease association prediction (AGLDA), to embed and encode the biological characteristics about lncRNA–disease associations, the topological features from the entire heterogeneous graph perspective, and the gated enhanced pairwise features. First, the strategy for constructing hyperedges is designed to reflect the biological characteristic that multiple lncRNAs are involved in multiple disease processes. Furthermore, each hyperedge has its own biological perspective, and multiple hyperedges are beneficial for revealing the diverse relationships among multiple lncRNAs and diseases. Second, we encode the biological features of each lncRNA (disease) node using a strategy based on dynamic hypergraph convolutional networks. The strategy may adaptively learn the features of the hyperedges and formulate the dynamically evolved hypergraph topological structure. Third, a group convolutional network is established to integrate the entire heterogeneous topological structure and multiple types of node attributes within an lncRNA–disease–miRNA graph. Finally, a gated convolutional strategy is proposed to enhance the informative features of the lncRNA–disease node pairs. The comparison experiments indicate that AGLDA outperforms seven advanced prediction methods. The ablation studies confirm the effectiveness of major innovations, and the case studies validate AGLDA's ability in application for discovering potential disease-related lncRNA candidates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花开富贵发布了新的文献求助10
1秒前
威武飞双完成签到 ,获得积分10
1秒前
nadeem完成签到 ,获得积分10
1秒前
豊子发布了新的文献求助10
1秒前
1秒前
1秒前
只只只发布了新的文献求助10
1秒前
chaxie完成签到,获得积分10
1秒前
13771590815完成签到,获得积分10
1秒前
cui123完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
打打应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得30
4秒前
大模型应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
神说应助科研通管家采纳,获得10
4秒前
Li发布了新的文献求助10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
上上发布了新的文献求助10
4秒前
打打应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
共享精神应助plh采纳,获得10
6秒前
轩辕断天完成签到,获得积分10
6秒前
Lny应助嘻嘻采纳,获得10
6秒前
6秒前
6秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4051013
求助须知:如何正确求助?哪些是违规求助? 3589239
关于积分的说明 11406138
捐赠科研通 3315457
什么是DOI,文献DOI怎么找? 1823782
邀请新用户注册赠送积分活动 895637
科研通“疑难数据库(出版商)”最低求助积分说明 816938