Comparative Analysis of Models for Identifying and Tracing Rice Flour Adulteration Using Raman Spectroscopy

转化(遗传学) 人工智能 预处理器 随机森林 人工神经网络 数学 平滑的 模式识别(心理学) 米粉 计算机科学 统计 化学 生物化学 基因 有机化学 原材料
作者
Xingyan Li,Liyuan Zhang,Runzhong Yu
出处
期刊:Journal of Food Science [Wiley]
卷期号:90 (5)
标识
DOI:10.1111/1750-3841.70272
摘要

ABSTRACT To address the issue of rice flour adulteration, where lower‐cost rice flour is mixed with higher‐grade varieties to reduce costs, this work proposes a rapid identification method using Raman spectroscopy. Rice varieties from Heilongjiang Province were selected for adulteration experiments, in which Longqingdao 8 (LQD) was mixed with Sanjiang 6, Longyang 16, Suijing 18, Longdao 18, and Daohuaxiang 2 in varying proportions. Six machine learning models were employed for classification, with four different preprocessing methods. The models’ performance was evaluated using the receiver operating characteristic (ROC) curves, and key characteristic bands for each rice variety were identified. For Sanjiang 6, the optimal preprocessing method was standard normal transformation, and the best‐performing model was the artificial neural network, which achieved an area under the curve (AUC) of 96.2% and an accuracy of 94.8%. For Daohuaxiang 2, smoothing forest and random forest yielded the best results, with an AUC of 92.4% and an accuracy of 94.8%. Similarly, for Longdao 18, standard normal transformation and artificial neural network provided the highest accuracy (99.6%) with an AUC of 99.3%. Longyang 16 also showed optimal results with standard normal transformation and artificial neural network, achieving an AUC of 93.7% and an accuracy of 96.6%. Finally, for Suijing 18, multivariate scattering correction and random forest were the most effective, with an AUC of 99.3% and an accuracy of 99.6%. This comparative analysis of traceability models demonstrates a promising approach to identifying rice flour adulteration. The identification of compounds influencing different rice varieties further enhances the traceability of rice types, providing a robust reference for future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
fansaiwang完成签到,获得积分20
1秒前
凶狠的盼柳完成签到,获得积分10
1秒前
酷波er应助性静H情逸采纳,获得10
1秒前
火星探险发布了新的文献求助10
3秒前
4秒前
5秒前
8秒前
8秒前
内向听白完成签到,获得积分20
8秒前
9秒前
9秒前
10秒前
女王完成签到 ,获得积分10
10秒前
10秒前
11秒前
无情灯泡发布了新的文献求助10
12秒前
13秒前
13秒前
核桃发布了新的文献求助30
13秒前
热爱科研的小康完成签到,获得积分10
14秒前
女王关注了科研通微信公众号
14秒前
14秒前
眨眼完成签到,获得积分10
15秒前
16秒前
Rosie发布了新的文献求助10
16秒前
17秒前
17秒前
Akim应助怡然的烤鸡采纳,获得10
18秒前
科目三应助怡然的山槐采纳,获得10
19秒前
AX完成签到,获得积分10
19秒前
所所应助内向听白采纳,获得10
19秒前
威武语儿完成签到,获得积分10
19秒前
汉堡包应助无情灯泡采纳,获得10
20秒前
星辰大海应助Wri采纳,获得10
22秒前
冷妹君发布了新的文献求助10
22秒前
林好人发布了新的文献求助10
23秒前
23秒前
望除应助威武语儿采纳,获得10
23秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897202
求助须知:如何正确求助?哪些是违规求助? 3441089
关于积分的说明 10820012
捐赠科研通 3166066
什么是DOI,文献DOI怎么找? 1749173
邀请新用户注册赠送积分活动 845156
科研通“疑难数据库(出版商)”最低求助积分说明 788443