Combination of Density Functional Theory and Machine Learning Provides Deeper Insight of the Underlying Mechanism in the Ultraviolet/Persulfate System

机制(生物学) 密度泛函理论 过硫酸盐 紫外线 紫外线a 化学 计算机科学 计算化学 材料科学 认识论 生物化学 哲学 光电子学 医学 皮肤病科 催化作用
作者
Jialiang Liang,D. H. Wang,Peng Zhen,Jingke Wu,Yunyi Li,Fuyang Liu,Yun Shen,Meiping Tong
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c14644
摘要

The competition between radical and nonradical processes in the activated persulfate system is a captivating and challenging topic in advanced oxidation processes. However, traditional research methods have encountered limitations in this area. This study employed DFT combined with machine learning to establish a quantitative structure–activity relationship between contributions of active species and molecular structures of pollutants in the UV persulfate system. By comparing models using different input data sets, it was observed that the protonation and deprotonation processes of organic molecules play a crucial role. Additionally, the condensed Fukui function, as a local descriptor, is found to be less effective compared to the dual descriptor due to its imprecise definition of f0. The sulfate radical exhibits high selectivity toward local electrophilic sites on molecules, while global descriptors determined by their chemical properties provide better predictions for contribution rates of hydroxyl radicals. Interestingly, there exists a piecewise function relating the contribution rates of different active species to ELU–HO, which is further supported by experimental data. Currently, this relationship cannot be explained by classical chemical theory and requires further investigation. Perhaps this is a new perspective brought to us by combining DFT with machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WANGs完成签到 ,获得积分10
刚刚
刚刚
1秒前
2秒前
大婷子发布了新的文献求助10
3秒前
烟花应助lx采纳,获得10
3秒前
Tendency发布了新的文献求助10
3秒前
科研通AI2S应助刻苦的晓槐采纳,获得10
3秒前
sherry221发布了新的文献求助10
3秒前
乔山彤发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
6秒前
Akim应助jiayouYi采纳,获得10
6秒前
tong发布了新的文献求助10
7秒前
8秒前
立婉陶给立婉陶的求助进行了留言
9秒前
1L聚合釜完成签到,获得积分10
9秒前
11秒前
11秒前
12秒前
12秒前
Jasper应助三国时代采纳,获得10
13秒前
田様应助sherry221采纳,获得10
13秒前
SciGPT应助大婷子采纳,获得10
14秒前
14秒前
YYYYYYYYY发布了新的文献求助10
15秒前
jngong完成签到 ,获得积分10
15秒前
粗暴的达发布了新的文献求助10
17秒前
科研通AI5应助开心夏云采纳,获得10
17秒前
动听寒凝发布了新的文献求助10
17秒前
18秒前
踏雪寻梅发布了新的文献求助10
19秒前
JamesPei应助义气的访波采纳,获得10
19秒前
科研通AI5应助朴素的雪萍采纳,获得10
19秒前
慕青应助睡不醒的喵采纳,获得10
20秒前
20秒前
aylwtt完成签到,获得积分10
21秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787493
求助须知:如何正确求助?哪些是违规求助? 3333123
关于积分的说明 10259242
捐赠科研通 3048542
什么是DOI,文献DOI怎么找? 1673135
邀请新用户注册赠送积分活动 801699
科研通“疑难数据库(出版商)”最低求助积分说明 760324