Triview Molecular Representation Learning Combined with Multitask Optimization for Enhanced Molecular Property Prediction

财产(哲学) 多任务学习 代表(政治) 计算机科学 人工智能 机器学习 任务(项目管理) 工程类 哲学 系统工程 认识论 政治 政治学 法学
作者
Xianjun Han,Jing Cai,Can Bai,Zijian Wu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00436
摘要

In molecular property prediction tasks, most methods rely on single-view representations, such as simplified molecular input line entry system (SMILES) strings. Some scholars have attempted to combine two graphical views for joint representation purposes, such as SMILES and molecular graphs, but few have utilized three or more graphical views for molecular representation. Additionally, these methods typically extract features through pretraining models and then fine-tune them for specific tasks. This type of approach is not suitable for tasks with limited data and fails to fully leverage the correlations between tasks. To improve molecular representations, we propose a method that integrates traditional molecular representation learning by combining molecular sequences, molecular graphs, and molecular images. We design three different encoders to extract three graphical views of the same features from a molecule and use contrastive learning to align these views. Moreover, we adopt a multitask optimization strategy that effectively utilizes the shared information and correlations between tasks, thereby improving the generalizability and predictive performance of the model. Finally, we use low-rank adaptation (LoRA) fine-tuning for specific tasks to further improve the output prediction results. The experimental results show that this method enhances the accuracy and robustness of molecular property prediction across multiple benchmark data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhan完成签到,获得积分10
1秒前
11发布了新的文献求助10
1秒前
1秒前
2秒前
斯文败类应助江柚白采纳,获得10
2秒前
媛媛不媛发布了新的文献求助10
3秒前
ZhouLu发布了新的文献求助10
3秒前
sansan发布了新的文献求助10
3秒前
7V发布了新的文献求助30
3秒前
4秒前
4秒前
4秒前
月影出岫完成签到,获得积分10
4秒前
whatever举报云淡风轻求助涉嫌违规
5秒前
5秒前
Grace0610应助CC采纳,获得10
5秒前
manman完成签到,获得积分10
6秒前
hhh发布了新的文献求助10
6秒前
7秒前
7秒前
qiqigao完成签到,获得积分10
7秒前
小二郎应助lalala采纳,获得10
8秒前
buguashushu发布了新的文献求助10
8秒前
8秒前
jiang完成签到,获得积分10
8秒前
8秒前
Silvia发布了新的文献求助10
9秒前
FG完成签到,获得积分10
9秒前
我不完成签到 ,获得积分10
9秒前
bea应助小天狼星采纳,获得50
9秒前
么么叽发布了新的文献求助10
10秒前
huanhuan666发布了新的文献求助10
10秒前
干净的人达完成签到 ,获得积分10
10秒前
所所应助懒癌晚期采纳,获得30
11秒前
幽默囧完成签到,获得积分10
11秒前
11秒前
NexusExplorer应助7V采纳,获得10
11秒前
黎森发布了新的文献求助10
11秒前
12秒前
123123完成签到,获得积分10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813647
求助须知:如何正确求助?哪些是违规求助? 3358007
关于积分的说明 10390954
捐赠科研通 3075296
什么是DOI,文献DOI怎么找? 1689246
邀请新用户注册赠送积分活动 812632
科研通“疑难数据库(出版商)”最低求助积分说明 767252