Rolling forming behavior of ultra-thin lithium metal for battery anode

金属锂 阳极 材料科学 电池(电) 锂(药物) 锂电池 金属 冶金 电极 化学 离子 热力学 物理 医学 功率(物理) 有机化学 物理化学 内分泌学 离子键合
作者
Hongyao Xie,Fangming Shen,Jian Zhou,Hongjun Li,Jinjian Zhang,Michael Enyan
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:239 (13): 4968-4979 被引量:1
标识
DOI:10.1177/09544062251327065
摘要

A comprehensive understanding of lithium metal’s mechanical deformation behavior during roll forming is crucial for producing thin lithium strips suitable for high-energy-density battery systems. However, there is currently a lack of comprehensive studies on the adequacy of the lithium metal constitutive model in the roll-forming process. The lithium metal true stress-strain is investigated via different strain rates of uniaxial tensile tests conducted at room temperature. The Johnson-Cook (J-C) model was modified to accurately describe lithium metal’s stress-strain relationship, determining its constitutive parameters, and the micro-mechanism of strain rate’s impact on plasticity was analyzed using SEM. Subsequently, the validity of the modified J-C model was conducted by employing statistical analyses such as Average Absolute Relative Error (AARE) and Root Mean Square Error (RMSE), along with numerical simulations of uniaxial tensile tests in ABAQUS. The improved J-C model is employed in numerical simulations of roll-forming thin lithium metal strips and compared with the roll-pressing experiment of lithium metal foil. The results indicate a positive correlation between the flow stress of lithium metal and the strain rate. The fitted curve of the modified J-C model closely matches the test tensile curve. Additionally, the simulation results of the modified model in the finite element simulation of roll forming are consistent with the roll-pressing experimental findings, further validating its feasibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智雅阳完成签到,获得积分10
刚刚
害怕的慕晴完成签到,获得积分10
刚刚
shine发布了新的文献求助10
1秒前
yuxin发布了新的文献求助10
1秒前
852应助汤磊采纳,获得10
1秒前
小夏完成签到,获得积分10
2秒前
3秒前
困困包完成签到,获得积分10
3秒前
4秒前
阿媛呐发布了新的文献求助10
4秒前
NexusExplorer应助diyancui采纳,获得10
4秒前
1aa完成签到,获得积分20
4秒前
花火琉璃发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
O椰完成签到,获得积分20
6秒前
maerray完成签到 ,获得积分10
6秒前
dfggg发布了新的文献求助10
7秒前
ok的发布了新的文献求助10
8秒前
9秒前
9秒前
Ava应助随风采纳,获得10
9秒前
852应助聪慧的盼夏采纳,获得10
10秒前
刘述发布了新的文献求助10
10秒前
简简单单发布了新的文献求助10
10秒前
Baituole77发布了新的文献求助10
10秒前
10秒前
聪慧的清涟完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
GXY完成签到,获得积分10
12秒前
12秒前
12秒前
大模型应助薛微有点甜采纳,获得10
12秒前
13秒前
15秒前
15秒前
16秒前
鳗鱼绿蓉发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514397
求助须知:如何正确求助?哪些是违规求助? 4608290
关于积分的说明 14509418
捐赠科研通 4544118
什么是DOI,文献DOI怎么找? 2489917
邀请新用户注册赠送积分活动 1471896
关于科研通互助平台的介绍 1443744