Deep multi-view information-powered vessel traffic flow prediction for intelligent transportation management

智能交通系统 先进的交通管理系统 运输工程 流量(计算机网络) 计算机科学 流量(数学) 工程类 计算机安全 几何学 数学
作者
Huanhuan Li,Yu Zhang,Yan Li,Jasmine Siu Lee Lam,Christian Matthews,Zaili Yang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:197: 104072-104072 被引量:2
标识
DOI:10.1016/j.tre.2025.104072
摘要

Vessel traffic flow (VTF) prediction, essential for intelligent transportation management, is derived from the statistical analysis of longitude and latitude information from Automatic Identification System (AIS) data. Traditional deep learning approaches have struggled to effectively capture the intricate and dynamic characteristics inherent in VTF data. To address these challenges, this paper proposes a new prediction model called a Multi-view Periodic-Temporal Network with Semantic Representation (i.e., MPTNSR), which leverages three perspectives: periodic, temporal, and semantic. VTF typically conceals the periodic and temporal characteristics during its evolution. A Convolutional Neural Network and Bidirectional Long Short-Term Memory (CNN-BiLSTM) model, constructed from periodic and temporal views, effectively captures this information. However, real-world scenarios frequently involve predicting VTF for multiple target regions simultaneously, where correlations between VTF changes in different areas are significant. The semantic view seeks to extract relationships across different channels based on the similarity of VTF data fluctuations and geographical distribution across regions, utilising a Graph Convolutional Network (GCN). The final prediction result is generated by fusing the information from these three views. Additionally, an optimised loss function is developed in the MPTNSR model that integrates local and global measurement information. In summary, the proposed model combines the strengths of a multi-view learning network and an optimised loss function. Quantitative comparative experiments demonstrate that the MPTNSR model outperforms eighteen state-of-the-art methods in VTF prediction tasks. To enhance the model's scalability, Graphics Processing Unit (GPU)-accelerated computation is introduced, significantly improving its efficiency and reducing its running time. The model enables accurate and robust prediction, effectively assisting in port planning and waterway management, thereby enhancing the safety and sustainability of maritime transportation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学渣一枚完成签到 ,获得积分10
1秒前
小小小完成签到,获得积分10
1秒前
2秒前
demoestar完成签到 ,获得积分10
3秒前
lcjynwe完成签到,获得积分10
3秒前
中岛悠斗完成签到,获得积分10
3秒前
哈哈哈哈哈完成签到,获得积分10
4秒前
糖诗完成签到 ,获得积分10
5秒前
5秒前
比亚迪士尼在逃公主完成签到,获得积分10
5秒前
ymxlcfc完成签到 ,获得积分10
6秒前
追寻师完成签到 ,获得积分10
6秒前
6秒前
yull完成签到,获得积分10
6秒前
jiayoujijin完成签到 ,获得积分10
7秒前
赵海帆完成签到,获得积分10
7秒前
zsj完成签到,获得积分10
7秒前
7秒前
多多指教完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
包容灵萱发布了新的文献求助10
11秒前
Mr.Jian完成签到,获得积分0
12秒前
zsqqqqq完成签到,获得积分10
12秒前
鳗鱼不尤完成签到,获得积分10
12秒前
大模型应助majf采纳,获得10
13秒前
乔磊发布了新的文献求助10
13秒前
踏实映天完成签到 ,获得积分10
14秒前
彪壮的含双完成签到,获得积分10
14秒前
丰富的大白菜真实的钥匙完成签到,获得积分10
15秒前
沉静的浩然完成签到,获得积分10
16秒前
YY完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
高高的起眸完成签到,获得积分10
17秒前
GC_AIBio完成签到,获得积分20
18秒前
qz完成签到,获得积分10
18秒前
越幸运完成签到 ,获得积分10
18秒前
19秒前
conanyangqun完成签到,获得积分0
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4223412
求助须知:如何正确求助?哪些是违规求助? 3756496
关于积分的说明 11807574
捐赠科研通 3418896
什么是DOI,文献DOI怎么找? 1876405
邀请新用户注册赠送积分活动 930076
科研通“疑难数据库(出版商)”最低求助积分说明 838358