钙钛矿(结构)
电极
材料科学
碳纤维
萃取(化学)
光电子学
电荷(物理)
纳米技术
化学工程
工程物理
化学
结晶学
物理
物理化学
复合材料
色谱法
工程类
复合数
量子力学
作者
Tino Lukas,Seongrok Seo,Philippe Holzhey,Katherine Stewart,Charlie Henderson,Lukas Wagner,David Beynon,Trystan Watson,Ji‐Seon Kim,Markus Kohlstädt,Henry J. Snaith
标识
DOI:10.1021/acsenergylett.4c03403
摘要
Perovskite solar cells achieve high power conversion efficiencies but usually rely on vacuum-deposited metallic contacts, leading to high material costs for noble metals and stability issues for more reactive metals. Carbon-based materials offer a cost-effective and potentially more stable alternative. The vast majority of carbon-electrode PSCs use the negative-intrinsic-positive (n-i-p) or "hole-transport-layer-free" architectures. Here, we present a systematic study to assess the compatibility of "inverted", p-i-n configuration PSC contact layers with carbon top electrodes. We identify incompatibilities between common electron transport layers and the carbon electrode deposition process and previously unobserved semiconducting properties in carbon electrodes with unique implications for charge extraction and electronic behavior. To overcome these issues, we introduce a double-layer atomic layer deposited tin oxide (SnO2) and Poly-(2,3-dihydrothieno-1,4-dioxin)-poly-(styrenesulfonate) (PEDOT:PSS), yielding up to 16.1% PCE and a retained 94% performance after 500 h of outdoor aging. The study is a crucial step forward for printable, metal-electrode-free, and evaporation-free perovskite PV technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI