OpenFOAMGPT: A retrieval-augmented large language model (LLM) agent for OpenFOAM-based computational fluid dynamics

物理 计算流体力学 流体力学 动力学(音乐) 统计物理学 机械 经典力学 计算科学 计算机科学 声学
作者
Sandeep Pandey,Ran Xu,Wenkang Wang,Xu Chu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (3) 被引量:2
标识
DOI:10.1063/5.0257555
摘要

This work presents a large language model (LLM)-based agent OpenFOAMGPT tailored for OpenFOAM-centric computational fluid dynamics (CFD) simulations, leveraging two foundation models from OpenAI: the GPT-4o (GPT means Generative Pre-trained Transformer) and a chain-of-thought–enabled o1 preview model. Both agents demonstrate success across multiple tasks. While the price of token with o1 model is six times as that of GPT-4o, it consistently exhibits superior performance in handling complex tasks, from zero-shot/few-shot case setup to boundary condition modifications, zero-shot turbulence model adjustments, and zero-shot code translation. Through an iterative correction loop, the agent efficiently addressed single-phase and multiphase flow, heat transfer, Reynolds-averaged Navier–Stokes modeling, large eddy simulation, and other engineering scenarios, often converging in a limited number of iterations at low token costs. To embed domain-specific knowledge, we employed a retrieval-augmented generation pipeline, demonstrating how preexisting simulation setups can further specialize the agent for subdomains such as energy and aerospace. Despite the great performance of the agent, human oversight remains crucial for ensuring accuracy and adapting to shifting contexts. Fluctuations in model performance over time suggest the need for monitoring in mission-critical applications. Although our demonstrations focus on OpenFOAM, the adaptable nature of this framework opens the door to developing LLM-driven agents into a wide range of solvers and codes. By streamlining CFD simulations, this approach has the potential to accelerate both fundamental research and industrial engineering advancements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冰魂应助WYZ采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
上官若男应助dan采纳,获得10
2秒前
2秒前
苗条梦玉发布了新的文献求助10
3秒前
linda发布了新的文献求助10
3秒前
871624521完成签到,获得积分10
6秒前
琴音应助General采纳,获得10
6秒前
情怀应助元锦程采纳,获得10
6秒前
6秒前
甜甜衣兜发布了新的文献求助10
6秒前
kekekelili完成签到,获得积分10
7秒前
Zz发布了新的文献求助10
7秒前
白衣发布了新的文献求助200
8秒前
爆米花应助苗条梦玉采纳,获得10
8秒前
852应助小心翼翼采纳,获得10
9秒前
研友_5Zl4VZ完成签到,获得积分10
9秒前
10秒前
汉堡包应助旺旺小仙贝采纳,获得10
10秒前
ying完成签到,获得积分10
11秒前
13秒前
GGBond完成签到,获得积分10
13秒前
fym完成签到,获得积分10
13秒前
万能图书馆应助鹿叽叽采纳,获得10
14秒前
14秒前
合适的鼠标完成签到,获得积分10
14秒前
15秒前
在水一方应助细腻依凝采纳,获得10
15秒前
16秒前
16秒前
16秒前
记录者完成签到,获得积分10
16秒前
执笔绘流年完成签到,获得积分10
16秒前
蔡小葵完成签到 ,获得积分10
16秒前
17秒前
17秒前
英姑应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
18秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881950
求助须知:如何正确求助?哪些是违规求助? 3424220
关于积分的说明 10738760
捐赠科研通 3149288
什么是DOI,文献DOI怎么找? 1737798
邀请新用户注册赠送积分活动 839009
科研通“疑难数据库(出版商)”最低求助积分说明 784224