Editorial: The role of genes and network pharmacology in new drug discovery

药物发现 计算生物学 药品 系统药理学 生物 药理学 生物信息学
作者
Jingxin Mao
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:16
标识
DOI:10.3389/fgene.2025.1578094
摘要

In the ever-evolving field of new drug development, genetics and network pharmacology have emerged as two pivotal elements, revolutionizing the traditional paradigm of drug research and development [1]. Historically, new drug development relied heavily on broader and more empirical approaches. However, with advancements in genetic science and network pharmacology, this field is undergoing profound transformation.Genes, as the basic units of inheritance, are crucial for understanding the underlying molecular mechanisms of diseases. In the past, the understanding of diseases was limited to superficial symptoms. The advent of high-throughput sequencing technology has enabled the decoding of the entire human genome, opening a door for researchers to the microscopic world and providing a vast amount of information on various disease-related gene variations [2]. This invaluable knowledge allows researchers to identify potential drug targets with unprecedented precision. In cancer research, for instance, the discovery of specific oncogenes like breast cancer susceptibility gene (BRCA) 1 and BRCA2 has directly fueled the development of targeted therapies such as poly(ADP-ribose) polymerase protein (PARP) inhibitors [3]. These drugs can precisely target cancer cells carrying BRCA mutations, leading to more significant therapeutic effects and drastically reduced side effects compared to traditional chemotherapy, thereby greatly enhancing the treatment experience and quality of life for cancer patients.On the other hand, network pharmacology takes a holistic view of complex biological systems. It recognizes that diseases are not caused by a single gene or protein but rather by perturbations in intricate molecular networks. By deeply analyzing the interactions among genes, proteins, and small molecules, network pharmacology aims to identify multitarget drugs that can regulate multiple nodes in disease-related networks [4]. This approach is particularly important for complex diseases such as neurodegenerative disorders and metabolic syndromes, which are often caused by multiple deregulated signaling pathways.For example, in Alzheimer's disease research, network-based drug discovery strategies are exploring drugs that can simultaneously target amyloid-beta (β) aggregation, tau phosphorylation, and neuroinflammatory pathways, potentially bringing new therapeutic hope to Alzheimer's patients [5].However, integrating genetics and network pharmacology in new drug development presents numerous challenges. One major obstacle is the complexity of data analysis.Large-scale genomic data generated by high-throughput experiments, along with complex network-related data, require advanced bioinformatics and computational tools for accurate interpretation [6]. Furthermore, new drug targets identified through these methods still require time-consuming and resource-intensive preclinical and clinical validation. From laboratory research to animal experiments and human clinical trials, each step demands substantial time, manpower, and funding, and any issues at any stage can hinder the entire research and development process [7].Therefore, the title of this research topic "The role of genes and network pharmacology in new drug discovery" was carried out which aims to better provide the academic forefront of computational methods for biomedical research in pharmacology and medicine in
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
桐桐应助李春霞采纳,获得10
4秒前
如意葶发布了新的文献求助10
4秒前
笨笨的发布了新的文献求助10
5秒前
小土豆发布了新的文献求助10
6秒前
呆萌冰烟完成签到 ,获得积分10
6秒前
Mole发布了新的文献求助10
10秒前
钵钵鸡发布了新的文献求助10
10秒前
11秒前
欧耶欧椰完成签到 ,获得积分10
11秒前
江江小菜鸡完成签到,获得积分10
11秒前
Lucas应助kai采纳,获得10
12秒前
Mole完成签到,获得积分10
15秒前
Hello应助无尘采纳,获得10
16秒前
16秒前
紫薯球完成签到,获得积分10
18秒前
19秒前
jiaru发布了新的文献求助10
21秒前
22秒前
咚咚完成签到 ,获得积分10
26秒前
犹豫野狼完成签到 ,获得积分10
28秒前
29秒前
笨笨的完成签到,获得积分20
30秒前
无花果应助糟糕的沂采纳,获得10
31秒前
空白幻想丶完成签到,获得积分10
31秒前
ccc发布了新的文献求助10
33秒前
112发布了新的文献求助10
33秒前
36秒前
Akim应助whynot采纳,获得10
37秒前
39秒前
小土豆完成签到,获得积分10
40秒前
盛夏如花发布了新的文献求助10
43秒前
糟糕的沂发布了新的文献求助10
44秒前
ffchen111完成签到 ,获得积分10
45秒前
jiaru完成签到,获得积分10
45秒前
jessiefuli完成签到,获得积分20
45秒前
46秒前
无问完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Gray Matters: A Biography of Brain Surgery 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782405
求助须知:如何正确求助?哪些是违规求助? 3327872
关于积分的说明 10233525
捐赠科研通 3042794
什么是DOI,文献DOI怎么找? 1670227
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758884