Suppressed ballistic transport of dislocations at strain rates up to 109 s–1 in a stable nanocrystalline alloy

纳米晶材料 材料科学 合金 凝聚态物理 拉伤 位错 冶金 结晶学 复合材料 纳米技术 化学 物理 医学 解剖
作者
Qi Tang,Jianxiong Li,B.C. Hornbuckle,Anit K. Giri,Kristopher A. Darling,Mostafa Hassani
出处
期刊:Communications materials [Nature Portfolio]
卷期号:6 (1)
标识
DOI:10.1038/s43246-025-00757-8
摘要

Dislocations are crucial to plastic deformation in crystals. At extreme strain rates, their motion shifts from thermally activated glide to ballistic transport, causing significant drag due to interactions with phonons, which can lead to embrittlement and failure in metals. The concept of dislons, quantized dislocations, has emerged to better understand these types of interactions. Similar to quantum treatment of dislocation-electron interactions, confining dislocations to nanometer scales, especially in nanocrystalline metals, could also yield unique mechanical behaviors different from bulk materials. Here, we present evidence showing that in Cu-3Ta, a thermo-mechanically stable nanocrystalline alloy, the phonon drag effect is entirely suppressed even at ultra-high strain rates (109 s−1). This is due to the stable confinement of dislocations within several-nanometer range, limiting their velocity and interaction with phonons. Our study indicates that in confined environments, the dislocation-phonon drag effect is minimal, potentially improving material performance under extreme conditions. Ballistic transport of dislocations and the resulting phonon drag are known to occur in crystalline metals under high strain rates, causing embrittlement. Here, we leverage dislocation confinement at the nanometer scale to entirely suppress the phonon drag regime, even at strain rates as high as 109 s−1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绝不内耗发布了新的文献求助10
刚刚
冷艳哈密瓜完成签到 ,获得积分10
1秒前
雪白易烟完成签到,获得积分10
1秒前
XiaoXiao完成签到,获得积分10
1秒前
2秒前
3秒前
985博士发布了新的文献求助10
5秒前
kmzzy完成签到,获得积分10
7秒前
丁和达完成签到 ,获得积分10
8秒前
田様应助简单的银耳汤采纳,获得10
8秒前
cc发布了新的文献求助10
8秒前
16秒前
chengzongTian发布了新的文献求助10
16秒前
LXY171发布了新的文献求助20
16秒前
16秒前
专注之双完成签到,获得积分10
18秒前
小蚂蚁完成签到 ,获得积分10
18秒前
科研助手6应助研友_Z1WrgL采纳,获得10
19秒前
19秒前
充电宝应助动听红牛采纳,获得10
20秒前
寒冰寒冰发布了新的文献求助10
20秒前
20秒前
静香发布了新的文献求助10
23秒前
lulu发布了新的文献求助10
26秒前
26秒前
27秒前
anhu发布了新的文献求助20
29秒前
寒冰寒冰完成签到,获得积分10
30秒前
31秒前
慕青应助科研通管家采纳,获得10
31秒前
CipherSage应助科研通管家采纳,获得10
31秒前
CodeCraft应助科研通管家采纳,获得10
31秒前
传奇3应助科研通管家采纳,获得10
31秒前
俭朴友安应助科研通管家采纳,获得10
31秒前
小蘑菇应助科研通管家采纳,获得10
31秒前
完美世界应助科研通管家采纳,获得10
31秒前
32秒前
32秒前
科研通AI2S应助XieQinxie采纳,获得10
33秒前
lion发布了新的文献求助20
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800229
求助须知:如何正确求助?哪些是违规求助? 3345547
关于积分的说明 10325604
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680707
邀请新用户注册赠送积分活动 807182
科研通“疑难数据库(出版商)”最低求助积分说明 763547