Research on in vitro skin models has advanced remarkably, driven by a better understanding of the skin and the search for more ethical and efficient methods. The development of these models was initially motivated by the need for reduced animal testing and a faster and more ethical approach for the safety evaluation of cosmetic and pharmaceutical products. Stricter regulations and growing ethical awareness have driven further evolution, resulting in more refined and reliable methods. Diversity of cell types is crucial to replicating the complexity of human skin, including epithelial, dendritic, endothelial, and adipose cells, providing environments that closely mimic the physiological skin environment. This allows for more precise studies on skin interactions with cosmetic, dermatological, and pharmaceutical products. In vitro skin models have applications in toxicity testing, dermatological product evaluation, skin ageing studies, and drug research, reducing dependence on animal testing. This review presents a look at the different types of in vitro skin models developed for various applications, with a brief look at their strengths and drawbacks. Models developed for disease-specific applications are also covered. Techniques such as bioprinting and organ-on-a-chip have revolutionised the manufacturing of these models. Challenges persist, such as the need to improve vascularisation and faithfully replicate skin architecture. The promising future of these models points to an exciting path forward for dermatological research and the cosmetic industry. This review addresses the history and regulations of skin models, explores various skin models, and highlights the most recent advances, outlining future perspectives and offering a comprehensive overview.