Small Target Detection Algorithm for UAV Aerial Photography Based on Improved YOLOv5s

航空摄影 计算机科学 人工智能 棱锥(几何) 算法 航空影像 特征(语言学) 计算机视觉 参数统计 图像(数学) 遥感 数学 统计 地质学 语言学 哲学 几何学
作者
Jingcheng Shang,Jinsong Wang,Shenbo Liu,Chen Wang,Bin Zheng
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (11): 2434-2434 被引量:22
标识
DOI:10.3390/electronics12112434
摘要

At present, UAV aerial photography has a good prospect in agricultural production, disaster response, and other aspects. The application of UAVs can greatly improve work efficiency and decision-making accuracy. However, owing to inherent features such as a wide field of view and large differences in the target scale in UAV aerial photography images, this can lead to existing target detection algorithms missing small targets or causing incorrect detections. To solve these problems, this paper proposes a small target detection algorithm for UAV aerial photography based on improved YOLOv5s. Firstly, a small target detection layer is applied in the algorithm to improve the detection performance of small targets in aerial images. Secondly, the enhanced weighted bidirectional characteristic pyramid Mul-BiFPN is adopted to replace the PANet network to improve the speed and accuracy of target detection. Then, CIoU was replaced by Focal EIoU to accelerate network convergence and improve regression accuracy. Finally, a non-parametric attention mechanism called the M-SimAM module is added to enhance the feature extraction capability. The proposed algorithm was evaluated on the VisDrone-2019 dataset. Compared with the YOLOV5s, the algorithm improved by 7.30%, 4.60%, 5.60%, and 6.10%, respectively, in mAP@50, mAP@0.5:0.95, the accuracy rate (P), and the recall rate (R). The experiments show that the proposed algorithm has greatly improved performance on small targets compared to YOLOv5s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
彭于晏应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
aa完成签到,获得积分10
2秒前
Akim应助坚定啤酒采纳,获得10
2秒前
啦啦啦发布了新的文献求助10
3秒前
4秒前
科研通AI5应助魔幻的紊采纳,获得10
6秒前
昌怜烟完成签到,获得积分10
6秒前
dl发布了新的文献求助10
10秒前
corbyn关注了科研通微信公众号
10秒前
彭于晏应助GH采纳,获得10
11秒前
Noob_saibot完成签到,获得积分10
11秒前
冰魂应助郭宇采纳,获得10
12秒前
马飞飞完成签到,获得积分10
13秒前
ajiduo完成签到 ,获得积分10
13秒前
斯文败类应助看火人采纳,获得10
15秒前
富二蛋完成签到,获得积分20
15秒前
15秒前
az完成签到 ,获得积分10
15秒前
虚拟的惜筠完成签到,获得积分10
16秒前
文献看不懂应助路过采纳,获得10
20秒前
坚定啤酒发布了新的文献求助10
22秒前
星辰大海应助中大王采纳,获得10
24秒前
24秒前
张必雨完成签到,获得积分10
24秒前
PN_Allen完成签到 ,获得积分10
24秒前
大玲完成签到,获得积分10
28秒前
张必雨发布了新的文献求助10
29秒前
30秒前
Damon完成签到 ,获得积分10
32秒前
冬东东完成签到,获得积分10
32秒前
中大王完成签到,获得积分20
33秒前
科研通AI5应助任我行采纳,获得10
33秒前
slj发布了新的文献求助10
34秒前
中大王发布了新的文献求助10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209047
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757921