Semi-supervised learning framework for crack segmentation based on contrastive learning and cross pseudo supervision

分割 计算机科学 人工智能 卷积神经网络 监督学习 半监督学习 模式识别(心理学) 编码器 机器学习 深度学习 人工神经网络 分类器(UML) 操作系统
作者
Chaoqun Xiang,Vincent J.L. Gan,Jun Guo,Lu Deng
出处
期刊:Measurement [Elsevier BV]
卷期号:217: 113091-113091 被引量:11
标识
DOI:10.1016/j.measurement.2023.113091
摘要

Fast and accurate crack segmentation plays an important role in the predictive maintenance of constructed facilities and civil infrastructures. However, it is worth noting that current deep-learning-based algorithms for crack segmentation may face significant challenges due to the requirement of a large amount of labeled data for high-precision segmentation. A novel semi-supervised learning framework for crack segmentation, which is referred to as semi-supervised crack (SemiCrack), based on the combination of contrastive learning and cross pseudo supervision (CPS) is presented in this study. The proposed segmentation network, called transformer and convolutional network (TC-Net), has a novel parallel encoder that fuses a transformer and a convolutional neural network. The inclusion of CPS can force the two models to maintain consistent outputs for various perturbed data based on the similarity loss. To capture the feature differences between positive and negative sample pairs extracted by the classifier and projector, pixel contrastive loss was also proposed. Compared with many state-of-the-art fully-supervised and semi-supervised segmentation algorithms, the results show that SemiCrack performs best on various publicly available datasets. The segmentation accuracy of TC-Net is higher than that of most fully-supervised segmentation networks, with an improvement of about 2% in Intersection of Union (IoU). Besides, SemiCrack requires only 20% labeled data to achieve comparable accuracy to other fully-supervised algorithms that require 100% labeled data. When the amount of labeled data is small, the IoUs of SemiCrack are significantly improved compared to fully supervised and semi-supervised networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助义气平蓝采纳,获得10
1秒前
1秒前
wxt发布了新的文献求助10
2秒前
2秒前
TT发布了新的文献求助10
3秒前
haprier完成签到 ,获得积分10
4秒前
小乐完成签到,获得积分10
4秒前
meimingzi完成签到,获得积分10
5秒前
5秒前
8秒前
柯nb发布了新的文献求助10
8秒前
8秒前
完美世界应助TT采纳,获得10
9秒前
111发布了新的文献求助10
11秒前
NexusExplorer应助甄人达采纳,获得10
11秒前
12秒前
12秒前
平常的翠容完成签到,获得积分10
13秒前
tamo发布了新的文献求助10
13秒前
15秒前
树池发布了新的文献求助10
16秒前
阳光过客发布了新的文献求助10
17秒前
Ade阿德完成签到 ,获得积分10
17秒前
ding应助旺旺小小酥采纳,获得10
19秒前
甜甜玫瑰应助碗碗采纳,获得10
21秒前
21秒前
22秒前
22秒前
Clearly完成签到 ,获得积分10
22秒前
22秒前
bkagyin应助RNAPW采纳,获得10
22秒前
Ava应助ln采纳,获得10
24秒前
小余同学发布了新的文献求助10
28秒前
28秒前
28秒前
ANGHUI完成签到,获得积分10
28秒前
柯nb完成签到,获得积分10
29秒前
29秒前
31秒前
sam发布了新的文献求助10
33秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
求该文附件!是附件!Prevalence and Data Availability of Early Childhood Caries in 193 United Nations Countries, 2007–2017 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807030
求助须知:如何正确求助?哪些是违规求助? 3351767
关于积分的说明 10355489
捐赠科研通 3067736
什么是DOI,文献DOI怎么找? 1684707
邀请新用户注册赠送积分活动 809895
科研通“疑难数据库(出版商)”最低求助积分说明 765733