计算机科学
正交调幅
电子工程
光通信
传输(电信)
光学混沌
光学
误码率
电信
半导体激光器理论
物理
频道(广播)
激光器
工程类
作者
Youming Wang,Yu Huang,Pei Zhou,Nianqiang Li
出处
期刊:Electronics
[Multidisciplinary Digital Publishing Institute]
日期:2023-01-18
卷期号:12 (3): 509-509
被引量:6
标识
DOI:10.3390/electronics12030509
摘要
Chaotic optical communication was initially proposed to provide advanced physical layer security for optical communication. Here, we propose and numerically demonstrate an optical chaos communication scheme based on semiconductor lasers subject to intensity modulation optical injection for secure transmission of quadrature amplitude modulation (QAM) messages. In this scheme, two chaotic sources were generated with different modulation parameters and acted as chaotic carriers at the transmitter side, which were subsequently used to drive two receivers in two separate channels. Numerical results demonstrate that this scheme allows for broadband chaos generation and high-quality chaos synchronization can be achieved to simultaneously encrypt two messages for secure communication; a 20 GBaud 16-QAM message was recovered correctly with a transmission distance in standard single mode fiber (SMF) over 120-km, while the other 20 GBaud 64-QAM message was limited to a 20-km fiber transmission distance. The system performance was systematically evaluated by analyzing the bit error ratio (BER) of the recovered message versus the masking coefficient and the transmission distance. Furthermore, our simulations justify the robustness against the mismatch of parameters. Therefore, we hope that this scheme can be experimentally implemented for high-speed chaos communication and secure key distribution.
科研通智能强力驱动
Strongly Powered by AbleSci AI