Dual Contrastive Transformer for Hierarchical Preference Modeling in Sequential Recommendation

计算机科学 偏爱 变压器 推荐系统 对偶(语法数字) 嵌入 人工智能 背景(考古学) 语义学(计算机科学) 情报检索 自然语言处理 机器学习 经济 程序设计语言 微观经济学 电压 古生物学 艺术 文学类 物理 生物 量子力学
作者
Chengkai Huang,Shoujin Wang,Xianzhi Wang,Lina Yao
标识
DOI:10.1145/3539618.3591672
摘要

Sequential recommender systems (SRSs) aim to predict the subsequent items which may interest users via comprehensively modeling users' complex preference embedded in the sequence of user-item interactions. However, most of existing SRSs often model users' single low-level preference based on item ID information while ignoring the high-level preference revealed by item attribute information, such as item category. Furthermore, they often utilize limited sequence context information to predict the next item while overlooking richer inter-item semantic relations. To this end, in this paper, we proposed a novel hierarchical preference modeling framework to substantially model the complex low- and high-level preference dynamics for accurate sequential recommendation. Specifically, in the framework, a novel dual-transformer module and a novel dual contrastive learning scheme have been designed to discriminatively learn users' low- and high-level preference and to effectively enhance both low- and high-level preference learning respectively. In addition, a novel semantics-enhanced context embedding module has been devised to generate more informative context embedding for further improving the recommendation performance. Extensive experiments on six real-world datasets have demonstrated both the superiority of our proposed method over the state-of-the-art ones and the rationality of our design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助瘦瘦的鬼神采纳,获得10
刚刚
YYMM完成签到,获得积分10
2秒前
2秒前
小辞芙芙发布了新的文献求助30
2秒前
weifeng完成签到,获得积分20
5秒前
6秒前
嘿ha发布了新的文献求助10
9秒前
下雨了完成签到,获得积分10
11秒前
zhx发布了新的文献求助10
12秒前
13秒前
13秒前
煲煲煲仔饭完成签到 ,获得积分10
14秒前
爆米花应助司念者你采纳,获得10
14秒前
遗落祭司完成签到,获得积分10
15秒前
nanfeng发布了新的文献求助10
16秒前
Jiangzhibing发布了新的文献求助10
16秒前
善学以致用应助问筠采纳,获得10
17秒前
爱学习完成签到,获得积分20
17秒前
Hamakanma完成签到,获得积分10
18秒前
20秒前
彭于晏应助兜兜采纳,获得10
22秒前
zho应助Hamakanma采纳,获得10
22秒前
斯文败类应助嘿ha采纳,获得10
23秒前
23秒前
YY完成签到,获得积分10
27秒前
27秒前
28秒前
冷艳凌晴发布了新的文献求助10
31秒前
木南发布了新的文献求助10
32秒前
36秒前
Jiangzhibing发布了新的文献求助10
38秒前
39秒前
39秒前
zhx完成签到,获得积分10
39秒前
屈绮兰应助可爱小哪吒采纳,获得30
39秒前
yue957发布了新的文献求助200
39秒前
40秒前
linghanlan发布了新的文献求助10
43秒前
43秒前
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939575
求助须知:如何正确求助?哪些是违规求助? 3485668
关于积分的说明 11033947
捐赠科研通 3215577
什么是DOI,文献DOI怎么找? 1777287
邀请新用户注册赠送积分活动 863420
科研通“疑难数据库(出版商)”最低求助积分说明 798829