来那替尼
癌症研究
拉帕蒂尼
突变
乳腺癌
受体酪氨酸激酶
酪氨酸激酶
激酶
突变体
酪氨酸激酶抑制剂
MAPK/ERK通路
癌症
生物
医学
信号转导
曲妥珠单抗
遗传学
细胞生物学
基因
作者
Arnaldo Marín,Abdullah Al Mamun,Hima Patel,Hiroaki Akamatsu,Dan Ye,Dhivya R. Sudhan,Lisa D. Eli,Katherine Marcelain,Benjamin P. Brown,Jens Meiler,Carlos L. Arteaga,Ariella B. Hanker
出处
期刊:Cancer Research
[American Association for Cancer Research]
日期:2023-07-05
卷期号:83 (18): 3145-3158
被引量:8
标识
DOI:10.1158/0008-5472.can-22-3617
摘要
Abstract HER2 mutations drive the growth of a subset of breast cancers and are targeted with HER2 tyrosine kinase inhibitors (TKI) such as neratinib. However, acquired resistance is common and limits the durability of clinical responses. Most HER2-mutant breast cancers progressing on neratinib-based therapy acquire secondary mutations in HER2. It is unknown whether these secondary HER2 mutations, other than the HER2T798I gatekeeper mutation, are causal to neratinib resistance. Herein, we show that secondary acquired HER2T862A and HER2L755S mutations promote resistance to HER2 TKIs via enhanced HER2 activation and impaired neratinib binding. While cells expressing each acquired HER2 mutation alone were sensitive to neratinib, expression of acquired double mutations enhanced HER2 signaling and reduced neratinib sensitivity. Computational structural modeling suggested that secondary HER2 mutations stabilize the HER2 active state and reduce neratinib binding affinity. Cells expressing double HER2 mutations exhibited resistance to most HER2 TKIs but retained sensitivity to mobocertinib and poziotinib. Double-mutant cells showed enhanced MEK/ERK signaling, which was blocked by combined inhibition of HER2 and MEK. Together, these findings reveal the driver function of secondary HER2 mutations in resistance to HER2 inhibition and provide a potential treatment strategy to overcome acquired resistance to HER2 TKIs in HER2-mutant breast cancer. Significance: HER2-mutant breast cancers acquire secondary HER2 mutations that drive resistance to HER2 tyrosine kinase inhibitors, which can be overcome by combined inhibition of HER2 and MEK.
科研通智能强力驱动
Strongly Powered by AbleSci AI