BAMS-FE: Band-by-Band Adaptive Multiscale Superpixel Feature Extraction for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 人工智能 特征提取 计算机科学 分割 特征(语言学) 图像分割 光谱带 遥感 哲学 语言学 地质学
作者
Jianmeng Li,Hui Sheng,Mingming Xu,Shanwei Liu,Zhe Zeng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2023.3294227
摘要

Superpixel segmentation has emerged as a prominent approach for simultaneous extraction of spatial-spectral features in hyperspectral imagery, exhibiting considerable efficacy in this domain. Although effective in spatial spectrum feature extraction, the existing feature extraction algorithms typically perform superpixel segmentation on a single band, failing to utilize the rich spectral and spatial information available across more bands. Moreover, current superpixel feature extraction methods lack scientific guidance for determining optimal multiscale parameters, which can lead to suboptimal segmentation and increased complexity of hyperspectral analysis. To overcome these limitations, this paper presents a novel band-by-band adaptive multiscale superpixel feature extraction method (BAMS-FE). The method comprises of two key components: a band-by-band superpixel-based feature extraction method and an adaptive optimal superpixel multiscale determination method. Firstly, the band-by-band superpixel-based feature extraction method performs superpixel segmentation for each band of hyperspectral images, thereby extracting joint spatial and spectral features. Secondly, the adaptive optimal superpixel multiscale determination method uses an unsupervised approach to determine the optimal multiscale superpixel segmentation parameters. Finally, the BAMS algorithm is obtained by combining the above two algorithms. The proposed algorithm is evaluated on five different datasets, and the results demonstrate its excellent precision and stability. With the top 99% principal components post PCA transformation or with raw, unprocessed hyperspectral datasets, stable and satisfactory classification performance is achieved by BAMS. Additionally, we compared its performance with several other state-of-the-art algorithms and found that it outperformed them in terms of accuracy. Our code will be publicly available at https://github.com/UPCGIT/BAMS-FE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shufessm完成签到,获得积分0
3秒前
nini完成签到,获得积分10
3秒前
wsq完成签到,获得积分10
4秒前
4秒前
9秒前
11秒前
together73W完成签到 ,获得积分10
11秒前
牛哥完成签到 ,获得积分10
13秒前
老西瓜完成签到,获得积分10
13秒前
15秒前
chen发布了新的文献求助10
16秒前
17秒前
20秒前
蹦比欸比关注了科研通微信公众号
20秒前
HiNDT发布了新的文献求助10
25秒前
smile发布了新的文献求助10
26秒前
zkwww完成签到 ,获得积分10
29秒前
存在完成签到,获得积分10
30秒前
漂亮幻莲发布了新的文献求助10
30秒前
cxl完成签到,获得积分10
32秒前
33秒前
李健的小迷弟应助存在采纳,获得10
34秒前
Zoe完成签到,获得积分10
36秒前
chen发布了新的文献求助10
37秒前
偷狗的小月亮完成签到,获得积分10
38秒前
tffyhgfjhy发布了新的文献求助10
38秒前
嘻嘻完成签到 ,获得积分10
42秒前
烟花应助拉布拉多多不多采纳,获得10
43秒前
orixero应助蹦比欸比采纳,获得30
44秒前
45秒前
麦当喽完成签到 ,获得积分10
50秒前
快来吃甜瓜完成签到,获得积分20
51秒前
52秒前
53秒前
机灵的千风完成签到,获得积分10
53秒前
烟花应助科研通管家采纳,获得10
54秒前
酷波er应助科研通管家采纳,获得10
54秒前
Ideal应助科研通管家采纳,获得50
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
小蘑菇应助科研通管家采纳,获得10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325736
关于积分的说明 10224182
捐赠科研通 3040851
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649