Development of ANN-based metaheuristic models for the study of the durability characteristics of high-volume fly ash self-compacting concrete with silica fume

硅粉 耐久性 粉煤灰 胶凝的 计算机科学 人工神经网络 元启发式 人工智能 机器学习 材料科学 复合材料 水泥 数据库
作者
Shashikant Kumar,Divesh Ranjan Kumar,Warit Wipulanusat,Suraparb Keawsawasvong
出处
期刊:Journal of building engineering [Elsevier]
卷期号:94: 109844-109844 被引量:33
标识
DOI:10.1016/j.jobe.2024.109844
摘要

The construction of durable and sustainable infrastructure requires the use of industrial byproducts such as fly ash (FA) and silica fume (SF) to enhance strength and durability. This study introduces novel machine learning models to forecast the results of rapid chloride penetration test (RCPT) for self-compacting concrete (SCC) containing high volumes of FA and SF. This study assessed the effects of supplementary cementitious materials (SCMs) and elevated temperature curing on the RCPT outcomes for SCC. Various metaheuristic algorithms including teaching–learning-based optimization (TLBO), ant colony optimization (ACO), the imperialist competitive algorithm (ICA), and shuffled complex evolution (SCE)—optimize the learning rate, weights, and biases of artificial neural network (ANN) models. A dataset of 360 experimental RCPT data points with seven input parameters was used to train and test the hybrid models. The accuracy of these models was assessed using eight performance indices, and the results were further analyzed through rank analysis, scatter plots, and error matrices. The training and testing sets for the AI models, specifically ANN-TLBO, exhibit a strong correlation between the experimental and predicted RCPT values, with R2 values of 0.9962 for training and 0.9676 for testing, compared to the R2 values of the other proposed models. Consequently, the results of this study suggest that the ANN-TLBO model is the optimal hybrid ANN model for predicting RCPT values in SCC. Verified experimental results and external validation indicate that the ANN-TLBO model is an effective alternative for accurately predicting real-time RCPT in SCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳莹芝发布了新的文献求助10
1秒前
保持好心情完成签到 ,获得积分10
2秒前
2秒前
Cynthia完成签到 ,获得积分10
2秒前
lameliu完成签到,获得积分10
2秒前
2秒前
JamesPei应助lili采纳,获得10
4秒前
是是是发布了新的文献求助10
4秒前
nancy完成签到,获得积分10
4秒前
4秒前
6秒前
callmekar发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
TRNA发布了新的文献求助10
7秒前
星辰大海应助是是是采纳,获得10
7秒前
Jasper应助林林林采纳,获得10
8秒前
8秒前
dkjg完成签到 ,获得积分10
8秒前
nancy发布了新的文献求助10
9秒前
observer发布了新的文献求助10
10秒前
科研小白发布了新的文献求助10
11秒前
干净冬莲发布了新的文献求助10
11秒前
12秒前
monned发布了新的文献求助10
12秒前
13秒前
明朗完成签到 ,获得积分10
13秒前
星辰大海应助dungaway采纳,获得10
14秒前
14秒前
勤劳莹芝完成签到 ,获得积分10
14秒前
14秒前
waddles完成签到,获得积分10
16秒前
16秒前
16秒前
18秒前
淼鑫发布了新的文献求助10
18秒前
郭嘉仪发布了新的文献求助10
18秒前
刘慧鑫发布了新的文献求助10
20秒前
hongxia发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542452
求助须知:如何正确求助?哪些是违规求助? 4628751
关于积分的说明 14609598
捐赠科研通 4569878
什么是DOI,文献DOI怎么找? 2505442
邀请新用户注册赠送积分活动 1482846
关于科研通互助平台的介绍 1454189