A theoretical investigation for improving the performance of non-fullerene organic solar cells through side-chain engineering of BTR non-fused-ring electron acceptors

有机太阳能电池 戒指(化学) 富勒烯 电子 材料科学 电子受体 链条(单位) 纳米技术 化学 光化学 有机化学 物理 复合材料 量子力学 聚合物
作者
Sidra Moeed,R. Bousbih,Ali Raza Ayub,Henry Rodriguez,Mohammed Aljohani,Majid S. Jabir,Muhammad Amin,Hira Zubair,Hasan Sh. Majdi,Muhammad Waqas,N. M. A. Hadia,Rasheed Ahmad Khera
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier BV]
卷期号:131: 108792-108792
标识
DOI:10.1016/j.jmgm.2024.108792
摘要

In the current quantum chemical study, indacenodithiophene donor core-based the end-capped alterations of the reference chromophore BTR drafted eight A2-A1-D-A1-A2 type small non-fullerene acceptors. All the computational simulations were executed under MPW1PW91/6-31G (d, p) level of DFT. The UV-Vis absorption, open circuit voltage, electron affinity, ionization potential, the density of states, reorganization energy, orbital analysis, and non-covalent interactions were studied and compared with BTR. Several molecules of our modeled series BT1-BT8 have shown distinctive features that are better than those of the BTR. The open circuit voltage (VOC) of BT5 has a favorable impact, allowing it to replace BTR in the field of organic solar cells. The charge carrier motilities for proposed molecules generated extraordinary findings when matched to the reference one (BTR). Further charge transmission was confirmed by creating the complex with a PM6 donor molecule. The remarkable dipole moment contributes to the formation of non-covalent bond interactions with chloroform, resulting in superior charge mobility. Based on these findings, it can be said that every tailored molecule has the potential to surpass chromophore molecule (BTR) in OSCs. So, all tailored molecules may enhance the efficiency of photovoltaic cells due to the involvement of potent terminal electron-capturing acceptor2 moieties. Considering these obtained results, these newly presented molecules can be regarded for developing efficient solar devices in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
天空完成签到,获得积分10
3秒前
prim发布了新的文献求助10
4秒前
开心就好完成签到,获得积分10
5秒前
FashionBoy应助默默的鬼神采纳,获得10
5秒前
6秒前
科研通AI5应助唯梦采纳,获得30
6秒前
天天快乐应助唯梦采纳,获得10
6秒前
传奇3应助唯梦采纳,获得10
6秒前
彭于晏应助唯梦采纳,获得10
6秒前
小马甲应助唯梦采纳,获得10
6秒前
酷波er应助唯梦采纳,获得10
6秒前
General完成签到 ,获得积分10
8秒前
9秒前
xqssll发布了新的文献求助10
11秒前
在水一方应助史淼荷采纳,获得10
12秒前
mo发布了新的文献求助10
13秒前
领导范儿应助科研牛马采纳,获得10
14秒前
搜集达人应助唯梦采纳,获得10
15秒前
思源应助唯梦采纳,获得10
15秒前
星辰大海应助唯梦采纳,获得10
15秒前
斯文败类应助唯梦采纳,获得10
15秒前
小蘑菇应助唯梦采纳,获得10
15秒前
隐形曼青应助唯梦采纳,获得10
15秒前
万能图书馆应助唯梦采纳,获得10
16秒前
上官若男应助唯梦采纳,获得10
16秒前
希望天下0贩的0应助唯梦采纳,获得10
16秒前
研友_VZG7GZ应助唯梦采纳,获得10
16秒前
Hu完成签到,获得积分10
16秒前
跳跃的静曼完成签到,获得积分10
16秒前
Mya完成签到,获得积分20
16秒前
鱼茫完成签到,获得积分10
17秒前
任无施完成签到 ,获得积分10
17秒前
Lucas应助ramu采纳,获得10
25秒前
亓亓完成签到 ,获得积分10
26秒前
29秒前
niu应助等等采纳,获得10
30秒前
李家新29完成签到,获得积分10
30秒前
顺利的若灵完成签到,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209141
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757944