已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Preoperative Differentiation of HER2‐Zero and HER2‐Low from HER2‐Positive Invasive Ductal Breast Cancers Using BI‐RADS MRI Features and Machine Learning Modeling

医学 乳腺癌 随机森林 人工智能 支持向量机 机器学习 HER2/东北 双雷达 算法 计算机科学 癌症 乳腺摄影术 内科学
作者
Jiejie Zhou,Yang Zhang,Haiwei Miao,Ga Young Yoon,Jinhao Wang,Yezhi Lin,Yi Li,Yanlin Liu,Jeon‐Hor Chen,Zhifang Pan,Min‐Ying Su,Meihao Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29447
摘要

Background Accurate determination of human epidermal growth factor receptor 2 (HER2) is important for choosing optimal HER2 targeting treatment strategies. HER2‐low is currently considered HER2‐negative, but patients may be eligible to receive new anti‐HER2 drug conjugates. Purpose To use breast MRI BI‐RADS features for classifying three HER2 levels, first to distinguish HER2‐zero from HER2‐low/positive (Task‐1), and then to distinguish HER2‐low from HER2‐positive (Task‐2). Study Type Retrospective. Population 621 invasive ductal cancer, 245 HER2‐zero, 191 HER2‐low, and 185 HER2‐positive. For Task‐1, 488 cases for training and 133 for testing. For Task‐2, 294 cases for training and 82 for testing. Field Strength/Sequence 3.0 T; 3D T1‐weighted DCE, short time inversion recovery T2, and single‐shot EPI DWI. Assessment Pathological information and BI‐RADS features were compared. Random Forest was used to select MRI features, and then four machine learning (ML) algorithms: decision tree (DT), support vector machine (SVM), k ‐nearest neighbors ( k ‐NN), and artificial neural nets (ANN), were applied to build models. Statistical Tests Chi‐square test, one‐way analysis of variance, and Kruskal–Wallis test were performed. The P values <0.05 were considered statistically significant. For ML models, the generated probability was used to construct the ROC curves. Results Peritumoral edema, the presence of multiple lesions and non‐mass enhancement (NME) showed significant differences. For distinguishing HER2‐zero from non‐zero (low + positive), multiple lesions, edema, margin, and tumor size were selected, and the k ‐NN model achieved the highest AUC of 0.86 in the training set and 0.79 in the testing set. For differentiating HER2‐low from HER2‐positive, multiple lesions, edema, and margin were selected, and the DT model achieved the highest AUC of 0.79 in the training set and 0.69 in the testing set. Data Conclusion BI‐RADS features read by radiologists from preoperative MRI can be analyzed using more sophisticated feature selection and ML algorithms to build models for the classification of HER2 status and identify HER2‐low. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anny完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助xiaoxiong采纳,获得10
2秒前
HopeStar发布了新的文献求助10
3秒前
害怕的宝川完成签到,获得积分10
3秒前
SYLH应助不懈奋进采纳,获得20
6秒前
谦让乐曲完成签到,获得积分10
7秒前
7秒前
研友_VZG7GZ应助磬筱采纳,获得10
9秒前
懒羊羊完成签到,获得积分10
12秒前
桐桐应助咯咚采纳,获得10
12秒前
情怀应助enmnm采纳,获得10
12秒前
gulugulu发布了新的文献求助10
13秒前
乐乐应助bzy采纳,获得10
14秒前
Lucas应助冰激凌采纳,获得10
15秒前
16秒前
17秒前
18秒前
18秒前
19秒前
我要发核心完成签到 ,获得积分10
21秒前
21秒前
磬筱发布了新的文献求助10
22秒前
24秒前
25秒前
yjsshr发布了新的文献求助10
25秒前
25秒前
27秒前
无算浮白发布了新的文献求助10
27秒前
华仔应助huihui采纳,获得10
28秒前
29秒前
一别如斯发布了新的文献求助10
29秒前
wangk完成签到,获得积分10
30秒前
隐形曼青应助无算浮白采纳,获得10
31秒前
kk发布了新的文献求助10
31秒前
hyx发布了新的文献求助10
32秒前
33秒前
dnmd发布了新的文献求助10
34秒前
武子阳完成签到 ,获得积分10
35秒前
36秒前
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787891
求助须知:如何正确求助?哪些是违规求助? 3333523
关于积分的说明 10262165
捐赠科研通 3049324
什么是DOI,文献DOI怎么找? 1673496
邀请新用户注册赠送积分活动 802002
科研通“疑难数据库(出版商)”最低求助积分说明 760458