化学
体内
组蛋白
甲基转移酶
组蛋白甲基转移酶
细胞培养
下调和上调
溴尿嘧啶
细胞生物学
计算生物学
甲基化
生物化学
基因
遗传学
生物
作者
Lianchao Liu,Abhijit Parolia,Yihan Liu,Hou Cai-yun,Tongchen He,Yuanyuan Qiao,Sanjana Eyunni,Jie Luo,Chungen Li,Yongxing Wang,Fengtao Zhou,Weixue Huang,Xiaomei Ren,Zhen Wang,Arul M. Chinnaiyan,Ke Ding
标识
DOI:10.1021/acs.jmedchem.3c01765
摘要
Nuclear receptor-binding SET domain-containing 2 (NSD2), a methyltransferase that primarily installs the dimethyl mark on lysine 36 of histone 3 (H3K36me2), has been recognized as a promising therapeutic target against cancer. However, existing NSD2 inhibitors suffer from low activity or inferior selectivity, and none of them can simultaneously remove the methyltransferase activity and chromatin binding function of NSD2. Herein we report the discovery of a novel NSD2 degrader LLC0424 by leveraging the proteolysis-targeting chimera technology. LLC0424 potently degraded NSD2 protein with a DC50 value of 20 nM and a Dmax value of 96% in acute lymphoblastic leukemia (ALL) RPMI-8402 cells. Mechanistic studies revealed LLC0424 to selectively induce NSD2 degradation in a cereblon- and proteasome-dependent fashion. LLC0424 also caused continuous downregulation of H3K36me2 and growth inhibition of ALL cell lines with NSD2 mutation. Importantly, intravenous or intraperitoneal injection of LLC0424 showed potent NSD2 degradation in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI