A hybrid data-driven method optimized by physical rules for online state collaborative estimation of lithium-ion batteries

锂(药物) 国家(计算机科学) 离子 估计 计算机科学 材料科学 工程类 化学 算法 系统工程 心理学 精神科 有机化学
作者
Ying Zhang,Pingwei Gu,Bin Duan,Chenghui Zhang
出处
期刊:Energy [Elsevier BV]
卷期号:301: 131710-131710 被引量:8
标识
DOI:10.1016/j.energy.2024.131710
摘要

Accurate online estimation of state of charge (SOC) and state of health (SOH) is crucial for safe operation and reasonable planning of battery management system (BMS). However, battery internal states are unmeasurable directly and coupled with each other, which results in serious difficulties on multi-states accurate estimation. Considering SOC estimation is deeply influenced by SOH, this paper proposes a collaborative estimation method combined machine learning algorithm with simple physical rule. Integrated the merits of the above methods, it can not only improve the estimating accuracy but also low computational burden to a large extent. Firstly, SOH acts as input of SOC in collaboration, which means SOH should have been already known before SOC estimation operation. Thus, SOH is creatively predicted based on gate recurrent unit network in ahead of SOC estimation. Subsequently, the well-trained SOC data-driven model is combined with the ampere hour (Ah) integration, which act as observation and state equation respectively in the particle filtering algorithm to realize the final estimation of SOC. This way, the sole data-driven model is well improved under physics restriction without any other computational procedure, such as online parameter identification. Simultaneously, the predicted SOH is used to fill the Ah integration expression to realize the collaboration between SOC and SOH. What's more, the SOH is further corrected by the incremental capacity peak at the checkpoint, thereby further reducing the estimation deviation. The experimental result on battery shows that the SOH estimated error is below 0.3Ah (the rated capacity is 32.5Ah) and SOC error is less than 1.5%. What's more, the generalization capacity of the proposed method is verified on different battery types based on public datasets. Obviously, the proposed method has fairly satisfactory property and performance and can totally support its promotion into state online evaluation of battery energy storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jinkk完成签到,获得积分10
1秒前
六月初八夜完成签到,获得积分10
1秒前
liyuqi61148完成签到,获得积分10
1秒前
你曾是少年完成签到,获得积分10
1秒前
科研通AI2S应助亿元采纳,获得10
3秒前
丘比特应助呼呼呼采纳,获得10
3秒前
3秒前
烂漫的从彤完成签到,获得积分10
4秒前
5秒前
明理的帆布鞋完成签到,获得积分10
5秒前
阿白完成签到 ,获得积分10
7秒前
花在开发布了新的文献求助10
9秒前
10秒前
无情凡桃发布了新的文献求助50
11秒前
华东小可爱完成签到,获得积分10
12秒前
12秒前
霸气鞯完成签到 ,获得积分10
14秒前
义气芷荷完成签到 ,获得积分10
16秒前
彪壮的慕山完成签到 ,获得积分10
16秒前
亿元发布了新的文献求助10
16秒前
hua完成签到,获得积分10
16秒前
科研通AI6应助鱼会淹死吗采纳,获得30
17秒前
zhangpeng完成签到,获得积分10
18秒前
打工人完成签到,获得积分10
18秒前
饺子完成签到,获得积分10
20秒前
寻梦完成签到,获得积分10
22秒前
饼子完成签到 ,获得积分10
23秒前
亿元完成签到,获得积分10
25秒前
lee完成签到 ,获得积分10
25秒前
希望天下0贩的0应助纯白采纳,获得10
28秒前
负责紊完成签到,获得积分10
28秒前
30秒前
通~发布了新的文献求助10
32秒前
领导范儿应助dd33采纳,获得10
33秒前
王乐多完成签到,获得积分10
35秒前
sandwich完成签到 ,获得积分10
35秒前
该饮茶了完成签到,获得积分10
36秒前
清脆松发布了新的文献求助10
37秒前
Flynn完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4774888
求助须知:如何正确求助?哪些是违规求助? 4107517
关于积分的说明 12705438
捐赠科研通 3828541
什么是DOI,文献DOI怎么找? 2112164
邀请新用户注册赠送积分活动 1136034
关于科研通互助平台的介绍 1019650