Cross-Modal Remote Sensing Image–Audio Retrieval With Adaptive Learning for Aligning Correlation

计算机科学 模式 特征(语言学) 模态(人机交互) 过程(计算) 相似性(几何) 相互信息 特征学习 人工智能 情态动词 代表(政治) 模式识别(心理学) 图像(数学) 哲学 法学 高分子化学 化学 社会学 政治学 操作系统 政治 语言学 社会科学
作者
Jinghao Huang,Yaxiong Chen,Shengwu Xiong,Xiaoqiang Lu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:1
标识
DOI:10.1109/tgrs.2024.3407857
摘要

An important challenge that existing work has yet to address is the relatively small differences in audio representations compared to the rich content provided by remote sensing images, making it easy to overlook certain details in the images. This imbalance in information between modalities poses a challenge in maintaining consistent representations. In response to this challenge, we propose a novel cross-modal RSIA retrieval method called Adaptive Learning for Aligning Correlation (ALAC). ALAC integrates region-level learning into image annotation through a region-enhanced learning attention module. By collaboratively suppressing features at different region levels, ALAC is able to provide a more comprehensive visual feature representation. Additionally, a novel adaptive knowledge transfer strategy has been proposed, which guides the learning process of the frontend network using aligned feature vectors. This approach allows the model to adaptively acquire alignment information during the learning process, thereby facilitating better alignment between the two modalities. Finally, to better utilize mutual information between different modalities, we introduce a plug-and-play result rerank module. This module optimizes the similarity matrix by using retrieval mutual information between modalities as weights, significantly improving retrieval accuracy. Experimental results on four RSIA datasets demonstrate that ALAC outperforms other methods in retrieval performance. Compared to state-of-the-art methods, improvements of 1.49%, 2.25%, 4.24% and 1.33% were respectively achieved by ALAC. The codes are accessible at https://github.com/huangjh98/ALAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ericzhouxx发布了新的文献求助10
刚刚
fth发布了新的文献求助20
刚刚
于你无瓜发布了新的文献求助10
1秒前
1秒前
嘻嘻完成签到,获得积分10
2秒前
2秒前
goo完成签到,获得积分20
2秒前
搜集达人应助hongxuezhi采纳,获得100
3秒前
3秒前
YUMI发布了新的文献求助10
3秒前
4秒前
seagull发布了新的文献求助10
5秒前
5秒前
5秒前
过时的音响完成签到,获得积分10
6秒前
junxi发布了新的文献求助10
6秒前
香蕉觅云应助kkkkk采纳,获得10
6秒前
所所应助qqq采纳,获得10
7秒前
7秒前
zzz发布了新的文献求助10
7秒前
CipherSage应助火柴采纳,获得10
7秒前
张虹完成签到,获得积分10
8秒前
你好包包完成签到,获得积分10
8秒前
wanci应助jjjjchou采纳,获得10
8秒前
炙热的炳完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
Hello应助黑白采纳,获得10
9秒前
10秒前
斯文败类应助优秀擎采纳,获得10
10秒前
FashionBoy应助歪歪打豆豆采纳,获得10
10秒前
韩明轩完成签到 ,获得积分10
11秒前
会飞的猪发布了新的文献求助10
11秒前
今后应助藏锋采纳,获得10
11秒前
11秒前
12秒前
leedar发布了新的文献求助10
12秒前
12秒前
pxwhhh完成签到,获得积分10
12秒前
13秒前
11完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5487183
求助须知:如何正确求助?哪些是违规求助? 4586669
关于积分的说明 14410474
捐赠科研通 4517522
什么是DOI,文献DOI怎么找? 2475310
邀请新用户注册赠送积分活动 1461092
关于科研通互助平台的介绍 1434019