Physics-informed neural networks (PINNs) for 4D hemodynamics prediction: An investigation of optimal framework based on vascular morphology

计算机科学 人工智能 血流动力学 深度学习 工作流程 机器学习 数据挖掘 医学 心脏病学 数据库
作者
Xuelan Zhang,Baoyan Mao,Yue Che,Jiaheng Kang,Mingyao Luo,Aike Qiao,Youjun Liu,Hitomi Anzai,Makoto Ohta,Yuting Guo,Gaoyang Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107287-107287 被引量:20
标识
DOI:10.1016/j.compbiomed.2023.107287
摘要

Hemodynamic parameters are of great significance in the clinical diagnosis and treatment of cardiovascular diseases. However, noninvasive, real-time and accurate acquisition of hemodynamics remains a challenge for current invasive detection and simulation algorithms. Here, we integrate computational fluid dynamics with our customized analysis framework based on a multi-attribute point cloud dataset and physics-informed neural networks (PINNs)-aided deep learning modules. This combination is implemented by our workflow that generates flow field datasets within two types of patient personalized models - aorta with fine coronary branches and abdominal aorta. Deep learning modules with or without an antecedent hierarchical structure model the flow field development and complete the mapping from spatial and temporal dimensions to 4D hemodynamics. 88,000 cases on 4 randomized partitions in 16 controlled trials reveal the hemodynamic landscape of spatio-temporal anisotropy within two types of personalized models, which demonstrates the effectiveness of PINN in predicting the space-time behavior of flow fields and gives the optimal deep learning framework for different blood vessels in terms of balancing the training cost and accuracy dimensions. The proposed framework shows intentional performance in computational cost, accuracy and visualization compared to currently prevalent methods, and has the potential for generalization to model flow fields and corresponding clinical metrics within vessels at different locations. We expect our framework to push the 4D hemodynamic predictions to the real-time level, and in statistically significant fashion, applicable to morphologically variable vessels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Animagus采纳,获得30
刚刚
Akim应助跳跳糖采纳,获得30
2秒前
qingran发布了新的文献求助10
2秒前
全员柚子茶完成签到,获得积分10
3秒前
上官老黑完成签到 ,获得积分10
3秒前
3秒前
ally完成签到,获得积分10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
冰魂应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
Risyaowei完成签到,获得积分10
5秒前
kd完成签到,获得积分10
6秒前
HaidongZhang发布了新的文献求助60
6秒前
8秒前
cat发布了新的文献求助10
8秒前
斯人完成签到 ,获得积分10
9秒前
9秒前
10秒前
BillowHu发布了新的文献求助10
10秒前
10秒前
12秒前
田様应助ppprotein采纳,获得10
14秒前
大帅发布了新的文献求助10
14秒前
15秒前
跳跳糖发布了新的文献求助30
15秒前
16秒前
啊锋完成签到 ,获得积分10
17秒前
cdercder应助非洲大象采纳,获得10
19秒前
19秒前
26秒前
27秒前
爱撒娇的曼凝完成签到,获得积分10
27秒前
27秒前
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787166
求助须知:如何正确求助?哪些是违规求助? 3332816
关于积分的说明 10257511
捐赠科研通 3048201
什么是DOI,文献DOI怎么找? 1673028
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760287