A Comparative Study on Embedding Models for Keyword Extraction Using KeyBERT Method

计算机科学 判决 变压器 关键词提取 嵌入 余弦相似度 自然语言处理 改述 水准点(测量) 人工智能 情报检索 数据挖掘 模式识别(心理学) 电压 大地测量学 地理 物理 量子力学
作者
Bayan Issa,Muhammed Basheer Jasser,Hui Na Chua,Muzaffar Hamzah
标识
DOI:10.1109/icset59111.2023.10295108
摘要

KeyBERT is a method for keywords/keyphrases extraction, which has three steps. The first step is selecting candidate keywords from a text using sklearn library, the second step is the embedding operation of the text and its candidate keywords; this operation is done by BERT to get a numerical representation that represents the meanings. The third step is calculating the cosine similarity between individual keywords vectors and document vector. In this paper, we focus on the second step of KeyBERT (embedding step). Although KeyBERT has a lot of supported models for the embedding operation, there are no extensive previous comparative studies to analyze and study the effect of using different supported models in KeyBERT. We introduce a comparative study of two commonly used groups of models; the first group is sentence-transformers pretrained models, supported via the sentence-transformers library, and the second group includes the Longformer model, supported via the Hugginface Transformers library. We conduct the comparative study of models on benchmark datasets, which contain English text documents of multi-domains with different text lengths. Based on the study, we found that the Paraphrase-mpnet-base-v2 model provides the best results among all other models in keyword extraction in terms of effectiveness (f1-score, recall, precision, MAP) on all datasets, with higher efficiency (time) on short text compared with using it on long text; accordingly, we recommend using it in that context. On the other hand, the Longformer model is the most efficient/fastest in keyword extraction among all other models on all datasets and this superiority has been evident, especially in long text; accordingly, we recommend using it in that context.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丸子发布了新的文献求助10
刚刚
xu完成签到,获得积分10
1秒前
烟花应助Yik采纳,获得10
2秒前
乐乐应助罗源采纳,获得10
3秒前
elliotzzz发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
ghy完成签到,获得积分10
5秒前
panpan111完成签到,获得积分10
6秒前
bkagyin应助丸子采纳,获得10
7秒前
ccy2023完成签到,获得积分10
7秒前
11111完成签到,获得积分10
8秒前
ding应助聪慧的凝海采纳,获得10
8秒前
脑洞疼应助xiaojinzi采纳,获得10
8秒前
安安完成签到,获得积分10
10秒前
11秒前
Tina完成签到,获得积分10
11秒前
11秒前
师震铎发布了新的文献求助10
12秒前
12秒前
Puffkten发布了新的文献求助10
12秒前
13秒前
舒适访彤发布了新的文献求助10
14秒前
淡定竺发布了新的文献求助10
14秒前
14秒前
Nuyoah完成签到 ,获得积分10
15秒前
15秒前
jackzzs完成签到,获得积分10
15秒前
一天完成签到 ,获得积分10
16秒前
12完成签到,获得积分10
16秒前
zywzyw完成签到,获得积分10
16秒前
17秒前
fighting完成签到,获得积分10
18秒前
999完成签到,获得积分10
18秒前
18秒前
18秒前
18秒前
dovehanguoge发布了新的文献求助10
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553450
求助须知:如何正确求助?哪些是违规求助? 4637983
关于积分的说明 14651924
捐赠科研通 4579900
什么是DOI,文献DOI怎么找? 2511951
邀请新用户注册赠送积分活动 1486817
关于科研通互助平台的介绍 1457747