A lightweight high-resolution algorithm based on deep learning for layer-wise defect detection in laser powder bed fusion

可解释性 人工智能 计算机科学 材料科学 修剪 计算机视觉 农学 生物
作者
Hualin Yan,Jian‐Feng Cai,Yingjian Zhao,Zimeng Jiang,Yingjie Zhang,Hang Ren,Yuhui Zhang,Huaping Li,Yu Long
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025604-025604 被引量:8
标识
DOI:10.1088/1361-6501/ad0e58
摘要

Abstract The quality of the powder bed is critical in the laser powder bed fusion (LPBF) process, and defects in the powder bed likely affect the quality of the final part. With the development of artificial intelligence technology, machine learning methods have been widely applied in powder-bed defect detection. However, to achieve high-precision defect detection, it is often necessary to construct complex network models and use high-resolution powder bed image data. To address these issues, this study used an off-axis industrial camera to capture layer-wise powder bed image data and proposed a defect detection model based on YOLOv7x and channel pruning to achieve defect identification and localization of powder bed patch images. Furthermore, an end-to-end defect detection pipeline based on image processing methods was proposed to detect defects in layer-wise powder bed images. Finally, the gradient-based class activation map technique (Grad CAM++) was used to analyze the interpretability of the detection results of the model. The results indicated that the proposed model was more lightweight than other models (YOLOv7x, Faster R-CNN, and SSD), with a model size of only 12.4MB. The average time for detecting powder bed image patches was significantly reduced to only 3.4 ms, and the average detection accuracy was as high as 97.4%. This demonstrates that the proposed detection method has the advantages of faster detection speed, higher detection accuracy, and simpler models, providing a reference for the real-time online detection of powder bed defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助ycd采纳,获得20
3秒前
矢车菊完成签到 ,获得积分10
4秒前
可罗雀完成签到,获得积分10
8秒前
微笑可乐完成签到,获得积分10
11秒前
无花果应助kiki采纳,获得10
12秒前
vovoking完成签到 ,获得积分10
14秒前
Pawn完成签到,获得积分10
18秒前
Kun发布了新的文献求助50
18秒前
20秒前
无情耷完成签到,获得积分10
21秒前
云母完成签到 ,获得积分10
22秒前
24秒前
李春霞发布了新的文献求助10
25秒前
正直远望完成签到,获得积分10
28秒前
完美世界应助MILK采纳,获得10
29秒前
Kun发布了新的文献求助10
33秒前
HHHWJ完成签到 ,获得积分10
34秒前
36秒前
固的曼完成签到,获得积分10
36秒前
徐老师完成签到 ,获得积分10
39秒前
41秒前
MILK发布了新的文献求助10
42秒前
MAVS完成签到,获得积分10
43秒前
45秒前
科研通AI5应助chendi20082009采纳,获得10
48秒前
Kun发布了新的文献求助10
48秒前
49秒前
50秒前
50秒前
51秒前
53秒前
orixero应助凶狠的乐巧采纳,获得10
54秒前
szong发布了新的文献求助10
55秒前
56秒前
1117完成签到 ,获得积分10
58秒前
snow_dragon完成签到 ,获得积分10
1分钟前
乔心发布了新的文献求助10
1分钟前
星辰大海应助科研通管家采纳,获得30
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325736
关于积分的说明 10224182
捐赠科研通 3040851
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649