已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MSFFA-YOLO Network: Multiclass Object Detection for Traffic Investigations in Foggy Weather

能见度 子网 计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 特征提取 任务(项目管理) 特征(语言学) 模式识别(心理学) 哲学 经济 管理 光学 语言学 物理 计算机网络
作者
Qiang Zhang,Xiaojian Hu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:12
标识
DOI:10.1109/tim.2023.3318671
摘要

Despite significant progress in vision-based detection methods, the task of detecting traffic objects in foggy weather remains challenging. The presence of fog reduces visibility, which in turn affects the information of traffic objects in videos. However, accurate information regarding the localization and classification of traffic objects is crucial for certain traffic investigations. In this paper, we focus on presenting a multi-class object detection method, namely MSFFA-YOLO network, that can be trained and jointly achieve three tasks: visibility enhancement, object classification, and object localization. In the network, we employ the enhanced YOLOv7 as a detection subnet, which is responsible for learning to locate and classify objects. In the restoration subnet, the multi-scale feature fusion attention (MSFFA) structure is presented for visibility enhancement. The experimental results on the synthetic foggy datasets show that the presented MSFFA-YOLO can achieve 64.6 percent accuracy on the FC005 dataset, 67.3 percent accuracy on the FC01 dataset, and 65.7 percent accuracy on the FC02 dataset. When evaluated on the natural foggy datasets, the presented MSFFA-YOLO can achieve 84.7 percent accuracy on the RTTS dataset and 84.1 percent accuracy on the RW dataset, indicating its ability to accurately detect multi-class traffic objects in real and foggy weather. And the experimental results show that the presented MSFFA-YOLO can achieve the efficiency of 37 FPS. Lastly, the experimental results demonstrate the excellent performance of our presented method for object localization and classification in foggy weather. And when detecting concealed traffic objects in foggy weather, our presented method exhibits superior accuracy. These results substantiate the applicability of our presented method for traffic investigations in foggy weather.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxx发布了新的文献求助10
3秒前
科研通AI2S应助xxx采纳,获得10
5秒前
发量多的秃子完成签到,获得积分10
7秒前
科研通AI5应助辛勤的乐曲采纳,获得10
13秒前
14秒前
健忘天曼发布了新的文献求助10
17秒前
19秒前
杨zhen完成签到,获得积分10
20秒前
24秒前
科研通AI5应助健忘天曼采纳,获得10
24秒前
Cheng完成签到 ,获得积分10
27秒前
Lou发布了新的文献求助10
29秒前
慢歌完成签到 ,获得积分10
31秒前
32秒前
欢喜的跳跳糖完成签到 ,获得积分10
34秒前
35秒前
健忘天曼完成签到,获得积分10
36秒前
donk完成签到 ,获得积分10
36秒前
隐形曼青应助小老板采纳,获得30
37秒前
Lou完成签到,获得积分10
37秒前
甜兰儿发布了新的文献求助10
37秒前
38秒前
38秒前
高天雨完成签到 ,获得积分10
38秒前
38秒前
密码小白发布了新的文献求助10
40秒前
Ava应助深情的迎海采纳,获得10
42秒前
42秒前
43秒前
白金之星完成签到 ,获得积分10
44秒前
Lucas应助甜兰儿采纳,获得10
46秒前
pencil123完成签到,获得积分10
48秒前
小老板发布了新的文献求助30
49秒前
许锦程完成签到,获得积分10
54秒前
乐观的羊完成签到,获得积分10
55秒前
光亮的天真完成签到 ,获得积分10
56秒前
克泷完成签到 ,获得积分10
57秒前
charih完成签到 ,获得积分10
1分钟前
荷包蛋完成签到 ,获得积分20
1分钟前
Iron_five完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336687
关于积分的说明 10281827
捐赠科研通 3053411
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803571
科研通“疑难数据库(出版商)”最低求助积分说明 761457