亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MSFFA-YOLO Network: Multiclass Object Detection for Traffic Investigations in Foggy Weather

能见度 子网 计算机科学 目标检测 人工智能 计算机视觉 对象(语法) 特征提取 任务(项目管理) 特征(语言学) 模式识别(心理学) 哲学 经济 管理 光学 语言学 物理 计算机网络
作者
Qiang Zhang,Xiaojian Hu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:29
标识
DOI:10.1109/tim.2023.3318671
摘要

Despite significant progress in vision-based detection methods, the task of detecting traffic objects in foggy weather remains challenging. The presence of fog reduces visibility, which in turn affects the information of traffic objects in videos. However, accurate information regarding the localization and classification of traffic objects is crucial for certain traffic investigations. In this paper, we focus on presenting a multi-class object detection method, namely MSFFA-YOLO network, that can be trained and jointly achieve three tasks: visibility enhancement, object classification, and object localization. In the network, we employ the enhanced YOLOv7 as a detection subnet, which is responsible for learning to locate and classify objects. In the restoration subnet, the multi-scale feature fusion attention (MSFFA) structure is presented for visibility enhancement. The experimental results on the synthetic foggy datasets show that the presented MSFFA-YOLO can achieve 64.6 percent accuracy on the FC005 dataset, 67.3 percent accuracy on the FC01 dataset, and 65.7 percent accuracy on the FC02 dataset. When evaluated on the natural foggy datasets, the presented MSFFA-YOLO can achieve 84.7 percent accuracy on the RTTS dataset and 84.1 percent accuracy on the RW dataset, indicating its ability to accurately detect multi-class traffic objects in real and foggy weather. And the experimental results show that the presented MSFFA-YOLO can achieve the efficiency of 37 FPS. Lastly, the experimental results demonstrate the excellent performance of our presented method for object localization and classification in foggy weather. And when detecting concealed traffic objects in foggy weather, our presented method exhibits superior accuracy. These results substantiate the applicability of our presented method for traffic investigations in foggy weather.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
seapowerseries完成签到,获得积分10
1秒前
可爱的坤完成签到,获得积分10
3秒前
可爱的坤发布了新的文献求助50
6秒前
李子谦完成签到 ,获得积分10
8秒前
9秒前
mengtong发布了新的文献求助30
9秒前
良良发布了新的文献求助10
14秒前
好运连连发布了新的文献求助10
15秒前
20秒前
ANKAR发布了新的文献求助10
26秒前
好运连连完成签到,获得积分10
28秒前
35秒前
量子星尘发布了新的文献求助10
35秒前
天天快乐应助ANKAR采纳,获得10
37秒前
ZYL完成签到,获得积分20
43秒前
走啊走应助老鼠耗子采纳,获得30
46秒前
骑猪看唱本完成签到,获得积分10
47秒前
57秒前
梨园春发布了新的文献求助200
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Adc应助你嵙这个期刊没买采纳,获得10
1分钟前
1分钟前
mengtong发布了新的文献求助10
1分钟前
Yolo完成签到 ,获得积分10
1分钟前
1分钟前
兔子精发布了新的文献求助10
1分钟前
crx完成签到 ,获得积分20
1分钟前
科研通AI2S应助牛奶起司猫采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
小药丸完成签到 ,获得积分10
2分钟前
2分钟前
赘婿应助世界需要我采纳,获得10
2分钟前
2分钟前
圈哥完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714386
求助须知:如何正确求助?哪些是违规求助? 5223310
关于积分的说明 15273201
捐赠科研通 4865802
什么是DOI,文献DOI怎么找? 2612406
邀请新用户注册赠送积分活动 1562493
关于科研通互助平台的介绍 1519755