Emotion recognition in EEG signals using deep learning methods: A review

脑电图 计算机科学 人工智能 情绪分类 情绪识别 信号(编程语言) 模式识别(心理学) 语音识别 心理学 神经科学 程序设计语言
作者
Mahboobeh Jafari,Afshin Shoeibi,Marjane Khodatars,Sara Bagherzadeh,Ahmad Shalbaf,David López-García,J. M. Górriz,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107450-107450 被引量:75
标识
DOI:10.1016/j.compbiomed.2023.107450
摘要

Emotions are a critical aspect of daily life and serve a crucial role in human decision-making, planning, reasoning, and other mental states. As a result, they are considered a significant factor in human interactions. Human emotions can be identified through various sources, such as facial expressions, speech, behavior (gesture/position), or physiological signals. The use of physiological signals can enhance the objectivity and reliability of emotion detection. Compared with peripheral physiological signals, electroencephalogram (EEG) recordings are directly generated by the central nervous system and are closely related to human emotions. EEG signals have the great spatial resolution that facilitates the evaluation of brain functions, making them a popular modality in emotion recognition studies. Emotion recognition using EEG signals presents several challenges, including signal variability due to electrode positioning, individual differences in signal morphology, and lack of a universal standard for EEG signal processing. Moreover, identifying the appropriate features for emotion recognition from EEG data requires further research. Finally, there is a need to develop more robust artificial intelligence (AI) including conventional machine learning (ML) and deep learning (DL) methods to handle the complex and diverse EEG signals associated with emotional states. This paper examines the application of DL techniques in emotion recognition from EEG signals and provides a detailed discussion of relevant articles. The paper explores the significant challenges in emotion recognition using EEG signals, highlights the potential of DL techniques in addressing these challenges, and suggests the scope for future research in emotion recognition using DL techniques. The paper concludes with a summary of its findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单身的青柏完成签到 ,获得积分10
4秒前
搜集达人应助圈圈黄采纳,获得10
5秒前
简单面包完成签到,获得积分10
6秒前
西柚完成签到 ,获得积分10
10秒前
XHX完成签到,获得积分10
12秒前
bkagyin应助狂野的若雁采纳,获得10
13秒前
可爱的函函应助阿然采纳,获得10
16秒前
蟲先生完成签到 ,获得积分0
20秒前
21秒前
扬xue完成签到,获得积分20
23秒前
唐宝完成签到 ,获得积分10
25秒前
27秒前
jin发布了新的文献求助10
27秒前
扬xue发布了新的文献求助30
28秒前
非要叫我起个昵称完成签到,获得积分10
29秒前
LZY发布了新的文献求助10
30秒前
shunshun51213完成签到,获得积分10
30秒前
zxy完成签到 ,获得积分10
31秒前
李健的小迷弟应助安白采纳,获得10
34秒前
hbb完成签到 ,获得积分10
38秒前
汉堡包应助科研通管家采纳,获得10
38秒前
back you up应助科研通管家采纳,获得30
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
慕青应助科研通管家采纳,获得10
38秒前
zhu97应助科研通管家采纳,获得20
38秒前
汉堡包应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
充电宝应助沁阳采纳,获得10
40秒前
LZY完成签到,获得积分10
41秒前
fdwang完成签到 ,获得积分10
43秒前
48秒前
49秒前
52秒前
52秒前
52秒前
归尘发布了新的文献求助10
54秒前
NexusExplorer应助执执采纳,获得10
55秒前
55秒前
失眠的蓝完成签到,获得积分10
56秒前
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778003
求助须知:如何正确求助?哪些是违规求助? 3323643
关于积分的说明 10215259
捐赠科研通 3038839
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339